, Volume 21, Issue 6, pp 3993–4007 | Cite as

Characterization of hydrothermally isolated xylan from beech wood by capillary electrophoresis with laser-induced fluorescence and mass spectrometry detection

  • Pavel Jáč
  • Thomas Elschner
  • Christian Reiter
  • Svenja-Catharina Bunz
  • Hans-Matthias Vorbrodt
  • Annett Pfeifer
  • Christian Neusüß
  • Thomas Heinze
  • Gerhard K. E. Scriba
Original Paper


Hemicelluloses such as xylans play an increasing role as renewable raw materials for technological applications. The complex and variable composition of hemicelluloses requires powerful analytical techniques in order to assess their composition. In the present study, the neutral fraction of hydrothermally isolated xylan from beech wood was characterized by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) upon derivatization with 8-aminopyrene-1,3,6-trisulfonic acid. Reproducible separation of the xylo-oligosaccharides was achieved using a polyvinyl alcohol coated capillary and a 25 mM sodium acetate buffer, pH 4.75, as background electrolyte at an applied voltage of −30 kV. Intermediate precision expressed as relative standard deviation was below 2.0 % for migration times and below 10 % for relative peak areas except for the oligomers present at very low concentrations only. At the same time, derivatization conditions proved to be robust as well. Samples obtained by fractionation of the xylan were subsequently characterized by CE-LIF. In addition, capillary electrophoresis with mass spectrometry detection indicated the presence of small amounts of xylo-oligosaccharides containing additional sugar moieties such as 4-O-methylglucuronic acid. Moreover, minor components containing acetyl groups could be detected. The presence of these impurities was confirmed by nuclear magnetic resonance analysis of the fractions. In conclusion, although none of the techniques applied here gave a complete picture of the composition of the investigated xylan or its fractions, the combination provided insight into the complexity of the sample.


Xylo-oligosaccharides Reductive amination Capillary electrophoresis Capillary electrophoresis/mass spectrometry Nuclear magnetic resonance 



8-Aminopyrene-1,3,6-trisulfonic acid


Background electrolyte


Capillary electrophoresis


Dimethyl sulfoxide


Degree of polymerization


ε-Aminocaproic acid


Electrospray ionization-mass spectrometry


Gluco-oligomer (numbers indicate degree of polymerization)


High performance anion-exchange chromatography with pulsed amperometric detection


Hydrothermally treated beech wood xylan


Neutral fraction of hydrothermally treated beech wood xylan


Laser-induced fluorescence


Matrix assisted laser desorption/ionization mass spectrometry


4-O-methylglucuronic acid


Nuclear magnetic resonance


Porous graphitized carbon liquid chromatography with evaporative light scattering detection


Polyvinyl alcohol


Reversed phase high performance liquid chromatography


Relative standard deviation


Size-exclusion chromatography




Xylo-oligomer (numbers indicate degree of polymerization)

Supplementary material

10570_2014_456_MOESM1_ESM.pdf (232 kb)
Supplementary material 1 (PDF 231 kb)
10570_2014_456_MOESM2_ESM.pdf (221 kb)
Supplementary material 2 (PDF 220 kb)


  1. Bunz S-C, Cutillo F, Neusüß C (2013a) Analysis of native and APTS-labeled N-glycans by capillary electrophoresis/time-of-flight mass spectrometry. Anal Bioanal Chem 405:8277–8284CrossRefGoogle Scholar
  2. Bunz S-C, Rapp E, Neusüss C (2013b) Capillary electrophoresis/mass spectrometry of APTS-labeled glycans for the identification of unknown glycan species in capillary electrophoresis/laser-induced fluorescence systems. Anal Chem 85:10218–10224CrossRefGoogle Scholar
  3. Chong SL, Nissilä T, Ketola RA, Koutaniemi S, Derba-Maceluch M, Mellerowicz EJ, Tenkanen M, Tuomainen P (2011) Feasibility of using atmospheric pressure matrix-assisted laser desorption/ionization with ion trap mass spectrometry in the analysis of acetylated xylooligosaccharides derived from hardwoods and Arabidopsis thaliana. Anal Bioanal Chem 401:2995–3009CrossRefGoogle Scholar
  4. Daus S, Petzold-Welcke K, Kötteritzsch M, Baumgaertel A, Schubert US, Heinze T (2011) Homogeneous sulfation of xylan from different sources. Macromol Mater Eng 296:551–561CrossRefGoogle Scholar
  5. DeLong EA (1978) Verfahren zur Behandlung von Lignocellulosematerial und dadurch gewonnenes Lignocelluloseprodukt in Teilchenform. DE Patent 2830476C2 (in German)Google Scholar
  6. Deutschmann R, Dekker RFH (2012) From plant biomass to bio-based chemicals: latest developments in xylan research. Biotechnol Adv 30:1627–1640CrossRefGoogle Scholar
  7. Doliška A, Strnad S, Ribitsch V, Kleinschek KS, Willför S, Saake B (2009) Analysis of galactoglucomannans from spruce wood by capillary electrophoresis. Cellulose 16:1089–1097CrossRefGoogle Scholar
  8. Ebringerová A, Heinze T (2000) Xylan and xylan derivatives—biopolymers with valuable properties, 1. Macromol Rapid Commun 21:542–556CrossRefGoogle Scholar
  9. Ebringerová A, Hromádková Z (1999) Xylans of industrial and biomedical importance. Biotechnol Genet Eng 16:325–346CrossRefGoogle Scholar
  10. Ebringerová A, Hromádková Z, Heinze T (2005) Hemicellulose. Adv Polym Sci 186:1–67CrossRefGoogle Scholar
  11. El Rassi Z (1999) Recent developments in capillary electrophoresis and capillary electrochromatography of carbohydrate species. Electrophoresis 20:3134–3144CrossRefGoogle Scholar
  12. Garrote G, Parajó JC (2002) Non-isothermal autohydrolysis of Eucalyptus wood. Wood Sci Technol 36:111–123CrossRefGoogle Scholar
  13. Guttman A, Cooke N, Starr CM (1994) Capillary electrophoresis separation of oligosaccharides: I. Effect of operational variables. Electrophoresis 15:1518–1522CrossRefGoogle Scholar
  14. Guttman A, Chen FTA, Evangelista RA, Cooke N (1996) High-resolution capillary gel electrophoresis of reducing oligosaccharides labeled with 1-aminopyrene-3,6,8-trisulfonate. Anal Biochem 233:234–242CrossRefGoogle Scholar
  15. Harvey DJ (2011) Derivatization of carbohydrates for analysis by chromatography, electrophoresis and mass spectrometry. J Chromatogr B 879:1196–1225CrossRefGoogle Scholar
  16. Hiltunen S, Sirén H (2013) Analysis of monosaccharides and oligosaccharides in the pulp and paper industry by use of capillary zone electrophoresis: a review. Anal Bioanal Chem 405:5773–5784CrossRefGoogle Scholar
  17. Hilz H, de Jong LE, Kabel MA, Schols HA, Voragen AGJ (2006) A comparison of liquid chromatography, capillary electrophoresis, and mass spectrometry methods to determine xyloglucan structures in black currants. J Chromatogr A 1133:275–286CrossRefGoogle Scholar
  18. Hoffman M, Jia Z, Pena MJ, Cash M, Harper A, Blackburn AR, Darvill A, York WS (2005) Structural analysis of xyloglucans in the primary cell walls of plants in the subclass Asteridae. Carbohydr Res 340:1826–1840CrossRefGoogle Scholar
  19. Kabel MA, Carvalheiro F, Garrote G, Avgerinos E, Koukios E, Parajo JC, Girio FM, Schols HA, Voragen AGJ (2002a) Hydrothermally treated xylan rich by-products yield different classes of xylo-oligosaccharids. Carbohydr Polym 50:47–56CrossRefGoogle Scholar
  20. Kabel MA, Schols HA, Voragen AGJ (2002b) Complex xylo-oligosaccharides identified from hydrothermally treated Eucalyptus wood and brewery´s spent grain. Carbohydr Polym 50:191–200CrossRefGoogle Scholar
  21. Kabel MA, Heijnis WH, Bakx EJ, Kuijpers R, Voragen AGJ, Schols HA (2006) Capillary electrophoresis fingerprinting, quantification and mass-identification of various 9-aminopyrene-1,4,6-trisulfonate-derivatized oligomers derived from plant polysaccharides. J Chromatogr A 1137:119–126CrossRefGoogle Scholar
  22. Metsämuuronen S, Lyytikäinen K, Backfolk K, Sirén H (2013) Determination of xylo-oligosaccharides in enzymatically hydrolysed pulp by liquid chromatography and capillary electrophoresis. Cellulose 20:1121–1133CrossRefGoogle Scholar
  23. Mittermayr S, Guttman A (2012) Influence of molecular configuration and conformation on the electromigration of oligosaccharides in narrow bore capillaries. Electrophoresis 33:1000–1007CrossRefGoogle Scholar
  24. O’Shea MG, Samuel MS, Konik CM, Morell MK (1998) Fluorophore-assisted carbohydrate electrophoresis (FACE) of oligosaccharides: efficiency of labeling and high-resolution separation. Carbohydr Res 307:1–12CrossRefGoogle Scholar
  25. Pabst M, Kolarich D, Pöltl G, Dalik T, Lubec G, Hofinger A, Altmann F (2009) Comparison of fluorescent labels for oligosaccharides and introduction of a new postlabeling purification method. Anal Biochem 384:263–273CrossRefGoogle Scholar
  26. Puls J, Dietrichs HH (1991) Separation of lignocelluloses into highly accessible fibre materials and hemicellulose fraction by the steaming-extraction process. Communication for European communities, EUR7091, energy biomass conference, pp 348–353Google Scholar
  27. Ruhaak LR, Zauner G, Huhn C, Bruggink C, Deelder AM, Wuhrer M (2010) Glycan labeling strategies and their use in identification and quantification. Anal Bioanal Chem 397:3457–3481CrossRefGoogle Scholar
  28. Teleman A, Tenkanen M, Jacobs A, Dahlman O (2002) Characterization of O-acetyl-(4-O-methylglucuruno)xylan isolated from birch and beech. Carbohydr Res 337:373–377CrossRefGoogle Scholar
  29. Vismeh R, Humpula JF, Chundawat SPS, Balan V, Dale BE, Jones AD (2013) Profiling of soluble neutral oligosaccharides from treated biomass using solid phase extraction and LC-TOF MS. Carbohydr Polym 94:791–799CrossRefGoogle Scholar
  30. Westphal Y, Kühnel S, Schols HA, Voragen AGJ, Gruppen H (2010) LC/CE-MS tools for the analysis of complex arabino-oligosaccharides. Carbohydr Res 345:2239–2251CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Pavel Jáč
    • 1
    • 6
  • Thomas Elschner
    • 2
  • Christian Reiter
    • 3
  • Svenja-Catharina Bunz
    • 4
  • Hans-Matthias Vorbrodt
    • 5
  • Annett Pfeifer
    • 2
  • Christian Neusüß
    • 4
  • Thomas Heinze
    • 2
  • Gerhard K. E. Scriba
    • 1
  1. 1.Department of Pharmaceutical and Medicinal Chemistry, School of PharmacyFriedrich-Schiller University JenaJenaGermany
  2. 2.Center of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular ChemistryFriedrich-Schiller University JenaJenaGermany
  3. 3.Bene PharmaChem GmbH & Co. KGGeretsriedGermany
  4. 4.Faculty of ChemistryAalen UniversityAalenGermany
  5. 5.Orgentis Chemicals GmbHGaterslebenGermany
  6. 6.Department of Analytical Chemistry, Faculty of PharmacyCharles UniversityHradec KrálovéCzech Republic

Personalised recommendations