, Volume 21, Issue 6, pp 4531–4544 | Cite as

Thermo-sensitive chitosan–cellulose derivative hydrogels: swelling behaviour and morphologic studies

  • Sandra Cerqueira BarrosEmail author
  • Ana Alves da Silva
  • Diana Barbosa Costa
  • Ivana Cesarino
  • Carlos M. Costa
  • Senentxu Lanceros-Méndez
  • Agnieszka Pawlicka
  • Maria Manuela Silva
Original Paper


Hydrogels are three-dimensional, hydrophilic, polymer networks that are able to imbibe large amounts of water or biological fluids, while maintaining their dimensional stability. The polymer binding might be achieved by chemical or physical interactions. Physical crosslinking of a polymer to form its hydrogel, might be accomplished either by casting-solvent evaporation (SC) method or by freeze–thaw (FT) technique. The physical hydrogels, especially the ones based on natural biopolymers, like polysaccharides, are being widely used in industry and medicine due to their favourable properties: biocompatibility; biodegradability; low toxicity and eco-friendly characteristics. Polysaccharides, like chitosan (CH) and (hydroxypropyl)methyl cellulose (HPMC) have gained great attention due to its stimuli sensitive properties: pH and temperature responsiveness, respectively. Thus, within this work we have developed physically crosslinked CH:HPMC hydrogel films, using both SC and FT techniques. The attained CH:HPMC membranes were evaluated in terms of their swelling, thermal (low critical solution temperature—LCST), structural (attenuated total reflectance Fourier transform infrared spectroscopy) and morphological (scanning electron microscopy and atomic force microscopy) properties. According to these results, the developed membranes exhibit a good miscibility between the two component biopolymers. Moreover, the CH:HPMC membranes exhibit a high swelling capacity (SWFT = 1,172 and SWSC = 7,323), a low surface roughness (Sq = 5.6–9.5 nm) and an elevated LCST (LCST = 85.2–87.5 °C). The stimuli sensitive behaviour makes hydrogels appealing for the design of smart devices applicable in a variety of technological fields. In our particular case, we envisage the application of such materials as active substances (moisturisers, antiperspirants and scents) delivers, into textile substrates in a controlled manner.


Chitosan (Hydroxypropyl)methyl cellulose Swelling LCST 





(Hydroxypropyl)methyl cellulose




Solvent casting


Chitosan and (Hydroxypropyl)methyl cellulose hydrogel, at X and Y proportion (0–100), at Z pH (3.0–4.0) and prepared by freeze–thaw or solvent casting techniques


Methyl cellulose


Swelling ratio


Ultraviolet–visible spectroscopy


Solution that mimics the human sweat


Attenuated total reflectance Fourier transform infrared spectroscopy


Low critical solution temperature


Cloud point


Scanning electron microscopy


Atomic force microscopy


Root mean square (RMS) height or RMS surface roughness)



The authors gratefully acknowledge the financial support of Chemistry and Physics Centres at Minho University (Pest-C/QUI/UI0686/2013 and PEST-C/FIS/UI607/2013) and the Portuguese Foundation for Science and Technology for the Post-Doc and PhD grants ascribed to Sandra Cerqueira Barros (SFRH/BPD/85399/2012) and Carlos M. Costa (SFRH/BD/68499/2010), respectively. The authors are also indebted to CNPq, FAPESP and CAPES for the financial support given to this research. M. M. Silva acknowledges to CNPq, for the mobility grant provided by this institution. Lastly, we would like to thank Devan-Micropolis, S.A. for supplying the natural polymers chitosan (CH) and (hydroxypropyl)methyl cellulose (HPMC) employed in this study.


  1. Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A (2013) Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Rev 65:1148–1171. doi: 10.1016/j.addr.2013.04.016 CrossRefGoogle Scholar
  2. Amaral IF, Granja PL, Melo LV, Saramago B, Barbosa MA (2006) Functionalization of chitosan membranes through phosphorylation: atomic force microscopy, wettability, and cytotoxicity studies. J Appl Polym Sci 102:276–284. doi: 10.1002/app.23737
  3. Anuar NK, Wui WT, Ghodgaonkar DK, Taib MN (2007) Characterization of hydroxypropylmethylcellulose films using microwave non-destructive testing technique. J Pharm Biomed Anal 43:549–557. doi: 10.1016/j.jpba.2006.08.014 CrossRefGoogle Scholar
  4. Baumgartner S, Lahajnar G, Sepe A, Kristl J (2002) Investigation of the state and dynamics of water in hydrogels of cellulose ethers by1H NMR spectroscopy. AAPS PharmSciTech 3:86–93. doi: 10.1208/pt030436 CrossRefGoogle Scholar
  5. Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99. doi: 10.1016/j.addr.2009.07.019 CrossRefGoogle Scholar
  6. Brogly M, Fahs A, Bistac S (2011) Surface properties of new-cellulose based polymer coatings for oral delivery systems. Polymer Preprints 52:1054–1055Google Scholar
  7. Brugnerotto J, Lizardi J, Goycoolea FM, Argüelles-Monal W, Desbrières J, Rinaudo M (2001) An infrared investigation in relation with chitin and chitosan characterization. Polymer 42:3569–3580. doi: 10.1016/S0032-3861(00)00713-8 CrossRefGoogle Scholar
  8. Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84:40–53. doi: 10.1016/j.carbpol.2010.12.023 CrossRefGoogle Scholar
  9. Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100. doi: 10.1016/j.eurpolymj.2009.04.033 CrossRefGoogle Scholar
  10. Cilurzo F, Selmin F, Minghetti P, Montanari L, Lenardi C, Orsini F, Poletti G (2005) Comparison between gamma and beta irradiation effects on hydroxypropylmethylcellulose and gelatin hard capsules. AAPS PharmSciTech 6:E586–E593. doi: 10.1208/pt060473
  11. Dhawade PP, Jagtap RN (2012) Characterization of the glass transition temperature of chitosan and its oligomers by temperature modulated differential scanning calorimetry. Adv Appl Sci Res 3:1372–1382Google Scholar
  12. Duran S, Şolpan D, Güven O (1999) Synthesis and characterization of acrylamide–acrylic acid hydrogels and adsorption of some textile dyes. Nucl Instrum Methods Phys Res Sect B 151:196–199. doi: 10.1016/s0168-583x(99)00151-2 CrossRefGoogle Scholar
  13. Francis Suh JK, Matthew HWT (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21:2589–2598. doi: 10.1016/S0142-9612(00)00126-5 CrossRefGoogle Scholar
  14. Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: a review. Iran Polym J 19:375–398Google Scholar
  15. Goycoolea FM, Heras A, Aranaz I, Galed G, Fernández-Valle ME, Argüelles-Monal W (2003) Effect of chemical crosslinking on the swelling and shrinking properties of thermal and pH-responsive chitosan hydrogels. Macromol Biosci 3:612–619. doi: 10.1002/mabi.200300011 CrossRefGoogle Scholar
  16. Guinesi LS, Cavalheiro ÉTG (2006) The use of DSC curves to determine the acetylation degree of chitin/chitosan samples. Thermochim Acta 444:128–133. doi: 10.1016/j.tca.2006.03.003 CrossRefGoogle Scholar
  17. Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60:1638–1649. doi: 10.1016/j.addr.2008.08.002 CrossRefGoogle Scholar
  18. Hiroki A, Tran HT, Nagasawa N, Yagi T, Tamada M (2009) Metal adsorption of carboxymethyl cellulose/carboxymethyl chitosan blend hydrogels prepared by Gamma irradiation. Radiat Phys Chem 78:1076–1080. doi: 10.1016/j.radphyschem.2009.05.003 CrossRefGoogle Scholar
  19. Huang RYM, Moon GY, Pal R (2001) Chitosan/anionic surfactant complex membranes for the pervaporation separation of methanol/MTBE and characterization of the polymer/surfactant system. J Membr Sci 184:1–15. doi: 10.1016/S0376-7388(00)00604-9
  20. Hussain S, Grandy DB, Reading M, Craig DQM (2004) A study of phase separation in peptide-loaded HPMC films using Tzero-modulated temperature DSC, atomic force microscopy, and scanning electron microscopy. J Pharm Sci 93:1672–1681. doi: 10.1002/jps.20066
  21. Jiang H, Su W, Caracci S, Bunning TJ, Cooper T, Adams WW (1996) Optical waveguiding and morphology of chitosan thin films. J Appl Polym Sci 61:1163–1171. doi: 10.1002/(sici)1097-4628(19960815)61:7<1163:aid-app12>;2-z CrossRefGoogle Scholar
  22. Kayı H, Tuncel SA, Elkamel A, Alper E (2005) Prediction of lower critical solution temperature of N-isopropylacrylamide–acrylic acid copolymer by an artificial neural network model. J Mol Model 11:55–60. doi: 10.1007/s00894-004-0221-x CrossRefGoogle Scholar
  23. Kim SY, Cho SM, Lee YM, Kim SJ (2000) Thermo- and pH-responsive behaviors of graft copolymer and blend based on chitosan and N-isopropylacrylamide. J Appl Polym Sci 78:1381–1391. doi: 10.1002/1097-4628(20001114)78:7<1381:aid-app90>;2-m CrossRefGoogle Scholar
  24. Kwon J, Choi J (2013) Clothing insulation and temperature, layer and mass of clothing under comfortable environmental conditions. J Physiol Anthropol 32:11. doi: 10.1186/1880-6805-32-11 CrossRefGoogle Scholar
  25. Ladet S, David L, Domard A (2008) Multi-membrane hydrogels. Nature 452:76–79.
  26. Medel S, Manuel García J, Garrido L, Quijada-Garrido I, París R (2011) Thermo- and pH-responsive gradient and block copolymers based on 2-(2-methoxyethoxy)ethyl methacrylate synthesized via atom transfer radical polymerization and the formation of thermoresponsive surfaces. J Polym Sci A Polym Chem 49:690–700. doi: 10.1002/pola.24480 CrossRefGoogle Scholar
  27. Milosavljević NB, Ristić MĐ, Perić-Grujić AA, Filipović JM, Štrbac SB, Rakočević ZL, Krušić MTK (2011) Removal of Cu2+ ions using hydrogels of chitosan, itaconic and methacrylic acid: FTIR, SEM/EDX, AFM, kinetic and equilibrium study. Colloid Surf A Physicochem Eng Asp 388:59–69. doi: 10.1016/j.colsurfa.2011.08.011 CrossRefGoogle Scholar
  28. Mohammad MF, Ali AO (2008) Lower critical solution temperature determination of smart, thermosensitive N-isopropylacrylamide-alt-2-hydroxyethyl methacrylate copolymers: kinetics and physical properties. J Appl Polym Sci 110:2815–2825. doi: 10.1002/app.28840 CrossRefGoogle Scholar
  29. Nishimura H, Donkai N, Miyamoto T (1997) Temperature-responsive hydrogels from cellulose. Macromol Symp 120:303–313. doi: 10.1002/masy.19971200130 CrossRefGoogle Scholar
  30. Nosal WH, Thompson DW, Yan L, Sarkar S, Subramanian A, Woollam JA (2005) UV–vis–infrared optical and AFM study of spin-cast chitosan films. Colloid Surf B-Biointerfaces 43:131–137. doi: 10.1016/j.colsurfb.2004.08.022
  31. OriginLab C (2010) OriginPro, 8.5 SR1 edn., NorthamptonGoogle Scholar
  32. Pal K, Banthia AK, Majumdar D (2009) Polymeric hydrogels: characterization and biomedical applications: a mini review. Des Monomers Polym 12:197–220. doi: 10.1163/156855509X436030 CrossRefGoogle Scholar
  33. Parida UK, Nayak AK, Binhani BK, Nayak PL (2011) Synthesis and characterization of chitosan-polyvinyl alcohol blended with cloisite 30B for controlled release of the anticancer drug curcumin. J Biomater Nanobiotechnol 2:414–425. doi: 10.4236/jbnb.2011.24051 CrossRefGoogle Scholar
  34. Parkova I, Vilumsone A (2011) Microclimate of Smart Garment. Mater Sci Text Cloth Technol 6:99–104Google Scholar
  35. Pasqui D, De Cagna M, Barbucci R (2012) Polysaccharide-based hydrogels: the key role of water in affecting mechanical properties. Polymers 4:1517–1534. doi: 10.3390/polym4031517 CrossRefGoogle Scholar
  36. Patel A, Mequanint K (2011) Hydrogel biomaterials. Biomedical engineering: frontiers and challenges. InTech. doi: 10.5772/24856
  37. Pawlak A, Mucha M (2003) Thermogravimetric and FTIR studies of chitosan blends. Thermochim Acta 396:153–166. doi: 10.1016/S0040-6031(02)00523-3 CrossRefGoogle Scholar
  38. Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46. doi: 10.1016/S0939-6411(00)00090-4 CrossRefGoogle Scholar
  39. Rotta J (2008) Propriedades físico-químicas de soluções formadoras e de filmes de quitosana e hidroxipropilmetilcelulose. Dissertation, Universidade Federal de Santa CatarinaGoogle Scholar
  40. Ruel-Gariépy E, Leroux J-C (2004) In situ-forming hydrogels—review of temperature-sensitive systems. Eur J Pharm Biopharm 58:409–426. doi: 10.1016/j.ejpb.2004.03.019 CrossRefGoogle Scholar
  41. Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373. doi: 10.3390/ma2020353 CrossRefGoogle Scholar
  42. Sarkar N (1979) Thermal gelation properties of methyl and hydroxypropyl methylcellulose. J Appl Polym Sci 24:1073–1087. doi: 10.1002/app.1979.070240420 CrossRefGoogle Scholar
  43. Schittek B et al. (2001) Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat Immunol 2:1133–1137.
  44. Schwall C, Banerjee I (2009) Micro- and nanoscale hydrogel systems for drug delivery and tissue engineering. Materials 2:577–612. doi: 10.3390/ma2020577 CrossRefGoogle Scholar
  45. Seo K-W, Kim D-J, Park K-N (2004) Swelling properties of poly(AM-co-AA)/chitosan pH sensitive superporous hydrogels. J Ind Eng Chem 10:794–800Google Scholar
  46. Silva SS, Luna SM, Gomes ME, Benesch J, Pashkuleva I, Mano JF, Reis RL (2008) Plasma surface modification of chitosan membranes: characterization and preliminary cell response studies. Macromol Biosci 8:568–576. doi: 10.1002/mabi.200700264
  47. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329. doi: 10.1002/adma.200802106 CrossRefGoogle Scholar
  48. Tripathi S, Mehrotra GK, Dutta PK (2009) Physicochemical and bioactivity of cross-linked chitosan–PVA film for food packaging applications. Int J Biol Macromol 45:372–376. doi: 10.1016/j.ijbiomac.2009.07.006 CrossRefGoogle Scholar
  49. Vrana NE, Liu Y, McGuinness GB, Cahill PA (2008) Characterization of poly(vinyl alcohol)/chitosan hydrogels as vascular tissue engineering scaffolds. Macromol Symp 269:106–110. doi: 10.1002/masy.200850913 CrossRefGoogle Scholar
  50. Xu YX, Kim KM, Hanna MA, Nag D (2005) Chitosan–starch composite film: preparation and characterization. Ind Crops Prod 21:185–192. doi: 10.1016/j.indcrop.2004.03.002 CrossRefGoogle Scholar
  51. Yang X, Liu Q, Chen X, Yu F, Zhu Z (2008) Investigation of PVA/ws-chitosan hydrogels prepared by combined γ-irradiation and freeze–thawing. Carbohydr Polym 73:401–408. doi: 10.1016/j.carbpol.2007.12.008 CrossRefGoogle Scholar
  52. Yin J, Luo K, Chen X, Khutoryanskiy VV (2006) Miscibility studies of the blends of chitosan with some cellulose ethers. Carbohydr Polym 63:238–244. doi: 10.1016/j.carbpol.2005.08.041 CrossRefGoogle Scholar
  53. Zhang XH, Li J, Wang YY (2012) Effects of clothing ventilation openings on thermoregulatory responses during exercise. Indian J Fibre Text 37:162–171. doi: 10.1109/ICBECS.2010.5462337 Google Scholar
  54. Zhang H, Zhang F, Wu J (2013) Physically crosslinked hydrogels from polysaccharides prepared by freeze–thaw technique. React Funct Polym 73:923–928. doi: 10.1016/j.reactfunctpolym.2012.12.014 CrossRefGoogle Scholar
  55. Wandrey C, Bartkowiak A, Harding SE (2010) Materials for encapsulation. In: Zuidam NJ, Nedovic VA (eds) Encapsulation technologies for active food ingredients and food processing. vol 3. Springer, New York. doi: 10.1007/978-1-4419-1008-0

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Sandra Cerqueira Barros
    • 1
    Email author
  • Ana Alves da Silva
    • 1
  • Diana Barbosa Costa
    • 1
  • Ivana Cesarino
    • 2
    • 4
  • Carlos M. Costa
    • 3
  • Senentxu Lanceros-Méndez
    • 3
  • Agnieszka Pawlicka
    • 4
  • Maria Manuela Silva
    • 1
  1. 1.Departamento/Centro de QuímicaUniversidade do MinhoBragaPortugal
  2. 2.Faculdade de Ciências AgronômicasUNESP/FCABotucatuBrazil
  3. 3.Departamento/Centro de FísicaUniversidade do MinhoBragaPortugal
  4. 4.Instituto de Química de São CarlosUniversidade de São PauloSão CarlosBrazil

Personalised recommendations