, Volume 21, Issue 6, pp 4497–4509 | Cite as

O-acetyl galactoglucomannan esters for barrier coatings

  • Victor KisonenEmail author
  • Chunlin Xu
  • Roger Bollström
  • Jonas Hartman
  • Hille Rautkoski
  • Maristiina Nurmi
  • Jarl Hemming
  • Patrik Eklund
  • Stefan Willför
Original Paper


A major enhancement of grease and water vapor barrier properties was accomplished with a 1–10 g/m2 coating of O-acetyl galactoglucomannan (GGM) ester or with GGM coatings applied as water dispersions on cartonboard. GGMs were esterified with phthalic and benzoic anhydrides, respectively. The novel phthalic esters of GGM (GGM-Ph) were characterized with HPLC, NMR, and matrix-assisted laser desorption/ionization with mass spectrometry (MALDI-TOF-MS). The degree of substitution of GGM-Ph was obtained by 1H NMR, 13C NMR, and HPLC. The GGM esters and GGM were coated onto cartonboard, and they demonstrated good moisture and very good grease resistance even with thin 1–3 g/m2 coatings. The time for penetration of 0.1 % rapeseed oil was 54 h with the 2.4 g/m2 coating thickness. The lowest water vapor transmission value was 39 g/m2/24 h with 9.7 g/m2 coating. The GGM esters had clearly higher water resistance and slightly higher grease barrier values than native GGM. High-molar-mass-based GGM (50 kg/mol) and GGM-Ph rendered better water vapor and grease barrier properties than low-molar-mass GGM (9 kg/mol) and GGM-Ph. The GGM-based coatings can be safely used on an industrial scale as water was used as a solvent. As obtained from non-food-based side-stream wood-based resources, GGM and GGM esters project a sustainable and modern conception for barrier purposes in food packaging.


Galactoglucomannan Hemicellulose esters Grease barrier WVTR Thin coating Biopolymer 



This work was carried out in the framework of the Future Biorefinery Project of the Finnish Funding Agency for Technology and Innovation and FIBIC, Ltd. This work was also part of the activities of the Åbo Akademi Process Chemistry Centre. We thank Jani Kniivilä at the Laboratory of Paper Coating and Converting for providing the software for the optical measurements and guiding the picture analysis. We thank Andrey Pranovich in our laboratory for the expertise in chromatography and, in general, Linus Silvander for performing SEM analysis. We thank Johanna Lahti and Hanna Christophliemk at Tampere University of Technology for helping with the grease barrier determination, and Francisco Vilaplana from the Royal Institute of Technology in Stockholm is thanked for the MALDI-TOF-MS analysis. Stora Enso is thanked for providing the cartonboards for testing.


  1. Andersson Roos A, Edlund U, Sjöberg J, Albertsson A-C, Stålbrand H (2008) Protein release from galactoglucomannan hydrogels: influence of substitutions and enzymatic hydrolysis by mannanase. Biomacromolecules 9:2104–2110CrossRefGoogle Scholar
  2. ASTM F119-82 (2008) Standard test method for rate of grease penetration of flexible barrier materials (rapid method), ASTM INTERNATIONALGoogle Scholar
  3. Begley TH, White K, Honigfort P, Twaroski ML, Neches R, Walker RA (2005) Perfluorochemicals: potential sources of and migration from food packaging. Food Addit Contam 22:1023–1031CrossRefGoogle Scholar
  4. Bollström R, Saarinen JJ, Räty J, Toivakka M (2012) Measuring solvent barrier properties of paper. Meas Sci Technol 23:1–8CrossRefGoogle Scholar
  5. Bordenave N, Grelier S, Coma V (2010) Hydrophobization and antimicrobial activity of chitosan and paper-based packaging material. Biomacromolecules 11:88–96CrossRefGoogle Scholar
  6. Dax D, Eklund P, Hemming J, Sarfraz J, Backman P, Xu C, Willför S (2013a) Amphiphilic spruce galactoglucomannans derivatives based on naturally-occuring fatty acids. Bioresources 8:3771–3790CrossRefGoogle Scholar
  7. Dax D, Xu C, Långvik O, Hemming J, Backman P, Willför S (2013b) Synthesis of SET-LRP induced galactoglucomannan-diblock copolymers. J Polym Sci Part A Polym Chem 51:5100–5110CrossRefGoogle Scholar
  8. Doherty W, Halley P, Edye L, Rogers D, Cardona F, Park Y, Woo T (2007) Studies on polymers and composites from lignin and fibre derived from sugar cane. Polym Adv Technol 18:673–678CrossRefGoogle Scholar
  9. Doliška A, Willför S, Strand S, Ribitsch V, Stana-Kleinschek K, Eklund P, Xu C (2012) Antithrombotic properties of sulphated wood-derived galactoglucomannans (GGMs). Holzforschung 66:149–154Google Scholar
  10. Ekholm FS, Ard A, Eklund P, Andr S, Gabius HJ, nez-Barbero JJ, Leino R (2012) Studies related to norway spruce galactoglucomannans: chemical synthesis, conformation analysis, NMR spectroscopic characterization, and molecular recognition of model compounds. Chem Eur J 18:14392–14405CrossRefGoogle Scholar
  11. Escalante A, Gonczalves A, Bodin A, Stepan A, Sandström C, Toriza B, Gatenholm P (2012) Flexible oxygen barrier films from spruce xylan. Carbohydr Polym 87:2381–2387CrossRefGoogle Scholar
  12. Hannuksela T, Hervé du Penhoat C (2004) NMR structural determination of dissolved O-acetylated galactoglucomannan isolated from spruce thermomechanical pulp. Carbohydr Res 339:301–312CrossRefGoogle Scholar
  13. Hansen NML, Plackett D (2008) Sustainable films and coatings from hemicelluloses: a review. Biomacromolecules 6:1493–1505CrossRefGoogle Scholar
  14. Hartman J, Albertsson A-C, Sjöberg J (2006) Biomacromolecules 7:1983–1989Google Scholar
  15. Hirvikorpi T, Vähä-Nissi M, Harlin A, Salomäki M, Areva S, Korhonen JT, Karppinen M (2011) Enhanced water vapor barrier properties for biopolymer films by polyelectrolyte multilayer and atomic layer deposited Al2O3 doublecoating. Appl Surf Sci 257:9451–9454CrossRefGoogle Scholar
  16. Johansson (2011) Nanocomposites with Biodegradable Polymers, ed. Mittal V. 14:348-352Google Scholar
  17. Kääriäinen TO, Maydannik P, Cameron DC, Lahtinen K, Johansson P, Kuusipalo J (2011) Atomic layer deposition on polymer based flexible packaging materials: Growth characteristics and diffusion barrier properties. Thin Solid Films 519:3146–3154CrossRefGoogle Scholar
  18. Kisonen V, Eklund P, Auer M, Sjöholm R, Pranovich A, Hemming J, Sundberg A, Aseyev V, Willför S (2012) Hydrophobication and characterisation of O-acetyl-galactoglucomannan for papermaking and barrier applications. Carbohydr Res 352:151–158CrossRefGoogle Scholar
  19. Kisonen V, Xu C, Eklund P, Lindqvist H, Sundberg A, Pranovich A, Sinkkonen A, Vilaplana F, Willför S (2014) Cationised O-acetyl galactoglucomannans: synthesis and characterisation. Carbohydr Polym 99:755–764CrossRefGoogle Scholar
  20. Kjellgren H, Gällstedt M, Engström G, Järnström L (2006) Barrier and surface properties of chitosan-coated greaseproof paper. Carbohydr Polym 65:453–460CrossRefGoogle Scholar
  21. Kuusipalo J, Lahtinen J (2005) Influence of temperature and mixing ratio on water vapor barrier properties of extrusion-coated paper. Int J Polym Anal Charact 10:71–83CrossRefGoogle Scholar
  22. Kuusipalo J, Kaunisto M, Laine A, Kellomäki M (2005) A fast method to produce strong NFC films as a platform for barrier and functional materials. Tappi J 8:17–21Google Scholar
  23. Leppänen A-N, Xu C, Parikka K, Eklund P, Sjöholm R, Brumer H, Tenkanen M, Willför S (2014) Targeted allylation and propargylation of galactose-containing polysaccharides in water. Carbohydr Polym 100:46–54CrossRefGoogle Scholar
  24. Lindqvist H, Holmback J, Rosling A, Salminen K, Holmbom B, Auer M, Sundberg A (2013) Galactoglucomannan derivatives and their application in papermaking. BioResources 8:994–1010CrossRefGoogle Scholar
  25. Martins JT, Cerqueira MA, Bourbon NI, Pinheiro NC, Souza BWS, Vicente AA (2012) Synergistic effects between k-carrageenan and locust bean gum on physicochemical properties of edible films made thereof. Food Hydrocoll 29:280–289CrossRefGoogle Scholar
  26. Mikkonen K, Tenkanen M (2012) Sustainable food packaging materials based on future biorefinery products: xylans and mannans. Trends Food Sci Tech 28:90–102CrossRefGoogle Scholar
  27. Mikkonen K, Heikkinen S, Soovre A, Peura M, Serimaa R, Talja RA, Helen H, Hyvönen L, Tenkanen M (2009) Films from oat spelt arabinoxylan plasticized with glycerol and sorbitol. J Appl Polym Sci 114:457–466CrossRefGoogle Scholar
  28. Mikkonen KS, Heikkilä MI, Helén H, Hyvönen L, Tenkanen M (2010) Composite films from spruce galactoglucomannans with microfibrillated spruce wood cellulose. Carbohydr Polym 79:1107–1112CrossRefGoogle Scholar
  29. Mikkonen KS, Schmidt J, Vesterinen A-H, Tenkanen M (2013) Crosslinking with ammonium zirconium carbonate improves the formation and properties of spruce galactoglucomannan films. J Mater Sci 48:4205–4213CrossRefGoogle Scholar
  30. Miller KS, Krochta JM (1997) Oxygen and aroma barrier properties of edible films: a review. Trends Food Sci Technol 8:228–237CrossRefGoogle Scholar
  31. Oinonen P, Areskogh D, Henriksson G (2013) Enzyme catalyzed cross-linking of spruce galactoglucomannans improves its applicability in barrier films. Carbohydr Polym 95:690–696CrossRefGoogle Scholar
  32. Polari L, Ojansivu P, Mäkelä S, Eckerman C, Holmbom B, Salminen SJ (2012) Galactoglucomannan extracted from Spruce (Picea abies) as a carbohydrate source for probiotic bacteria. Agricu Food Chem 60:11037–11043CrossRefGoogle Scholar
  33. Schmidt VCR, Portoa LP, Laurindoa JB, Menegalli FC (2013) Water vapor barrier and mechanical properties of starch films containing stearic acid. Ind Crops Prod 41:227–234CrossRefGoogle Scholar
  34. Song T, Pranovich A, Sumerskiy I, Holmbom B (2008) Extraction of galactoglucomannan from spruce wood with pressurized hot water. Holzforschung 62:659–666CrossRefGoogle Scholar
  35. Suciu NA, Tiberto F, Vasileiadis S, Lamastra L, Trevisan M (2013) Food Chem 141:4146–4151CrossRefGoogle Scholar
  36. T 507 cm-99 Grease resistance of flexible packaging materials, 2000-2001 TAPPI test methods, TAPPI PRESSGoogle Scholar
  37. T 454 om-94 Turperntine tiest for voids in glassine and greaseproof papers, 2000-2001 TAPPI test methods, TAPPI PRESSGoogle Scholar
  38. Timell TE, Syracuse NY (1967) Recent progress in the chemistry of wood hemicellulose. Wood Sci Technol 1:45–70CrossRefGoogle Scholar
  39. Voepel J, Sjöberg J, Reif M, Albertsson A-C, Hultin U-K, Gasslander UJ (2009) Alkenyl-functionalized precursors for renewable hydrogels design. Appl Polym Sci 112:2401–2412CrossRefGoogle Scholar
  40. Willför S, Sjöholm SR, Laine C, Roslund M, Hemming J, Holmbom B (2003a) Characterisation of water-soluble galactoglucomannans from Norway sprucewood and thermomechanical pulp. Carbohydr Polym 52:175–187CrossRefGoogle Scholar
  41. Willför S, Rehn P, Sundberg A, Sundberg K, Holmbom B (2003b) Recovery of water-soluble acetylgalactoglucomannas from mechanical pulp of spruce. Tappi J 11:27–32Google Scholar
  42. Xu C, Willför S, Holmlund P, Holmbom B (2009) Rheological properties of water-soluble spruce O-acetyl galactoglucomannans. Carbohydr Polym 75:498–504CrossRefGoogle Scholar
  43. Xu C, Leppänen A-S, Eklund P, Holmlund P, Sjöholm R, Sundberg K, Willför S (2010) Carbohydr Res 345:810–816Google Scholar
  44. Xu C, Spadiut O, Araujo AA, Nakhai AA, Brumer H (2012) Chemo-enzymatic assembly of clickable cellulose surfaces via multivalent polysaccharides. ChemSusChem 5(4):661–665Google Scholar
  45. Yaich AI, Edlund U, Albertsson AC (2014) Adapting wood hydrolysate barriers to high humidity conditions. Carbohydr Polym 100:135–142CrossRefGoogle Scholar
  46. Zhang W, Xiao H, Qian L (2014) Enhanced water vapour barrier and grease resistance of paperbilayer-coated with chitosan and beeswax. Carbohydr Polym 101:401–406Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Victor Kisonen
    • 1
    Email author
  • Chunlin Xu
    • 1
    • 2
  • Roger Bollström
    • 3
  • Jonas Hartman
    • 4
  • Hille Rautkoski
    • 4
  • Maristiina Nurmi
    • 3
  • Jarl Hemming
    • 1
  • Patrik Eklund
    • 5
  • Stefan Willför
    • 1
  1. 1.Laboratory of Wood and Paper Chemistry, Process Chemistry CentreÅbo Akademi UniversityTurkuFinland
  2. 2.Wallenberg Wood Science CenterKTH, The Royal Institute of TechnologyStockholmSweden
  3. 3.Laboratory of Paper Coating and ConvertingÅbo Akademi UniversityTurkuFinland
  4. 4.VTT Technical Research CenterEspooFinland
  5. 5.Laboratory of Organic ChemistryÅbo Akademi UniversityTurkuFinland

Personalised recommendations