, Volume 21, Issue 6, pp 4471–4481 | Cite as

Dry jet-wet spinning of strong cellulose filaments from ionic liquid solution

  • Lauri K. J. Hauru
  • Michael Hummel
  • Anne Michud
  • Herbert Sixta
Original Paper


Considerable growth is expected in the production of man-made cellulose textile fibers, which are commercially produced either via derivatization to form cellulose xanthate (viscose) or via direct dissolution in N-methylmorpholine N-oxide (Lyocell). In the study at hand, cellulosic fibers are spun from a solution in the ionic liquid [DBNH] [OAc] into water, resulting in properties equal or better than Lyocell (tensile strength 37 cN tex−1 or 550 MPa). Spinning stability is explored, and the effects of extrusion velocity, draw ratio, spinneret aspect ratio and bath temperature on mechanical properties and orientation are discussed. With the given set-up, tenacities and moduli are improved with higher draw ratios, while elongation at break, the ratio of wet to dry strength, modulus of resilience and birefringence depend little on draw ratio or extrusion velocity, elastic limit not at all. We find the process robust and simple, with stretching to a draw ratio of 5 effecting most improvement, explained by the orientation of amorphous domains along the fiber axis.


Textile fibers Spinning Extrusion Regeneration Tenacity Modulus 



The authors wish to thank TEKES—the Finnish Funding Agency for Technology and Innovation and Finnish Bioeconomy Cluster FIBIC Ltd. for funding in the framework of the Future Biorefinery Cellulose project. Arno Parviainen synthesized the [DBNH] [OAc] with Dr. Alistair King and Prof. Ilkka Kilpeläinen (University of Helsinki). Dope samples were kindly provided by Shirin Asaadi. Kaarlo Nieminen assisted with MatLab and GPC was operated by Lasse Tolonen.

Supplementary material

10570_2014_414_MOESM1_ESM.pdf (770 kb)
Supplementary material 1 (PDF 769 kb)


  1. Adusumali R-B, Reifferscheid M, Weber H, Roeder T, Sixta H, Gindl W (2006) Mechanical properties of regenerated cellulose fibres for composites. Macromol Symp 244(1):119–125. doi: 10.1002/masy.200651211 CrossRefGoogle Scholar
  2. ASTM (2010) Standard test method for tensile properties of yarns by the single-strand method. D2256/D2256M. ASTM International, West Conshohocken, PA, United StatesGoogle Scholar
  3. Bernot RJ, Brueseke MA, Evans-White MA, Lamberti GA (2005) Acute and chronic toxicity of imidazolium-based ionic liquids on Daphnia magna. Environ Toxicol Chem 24(1):87–92. doi: 10.1897/03-635.1 CrossRefGoogle Scholar
  4. BISFA (2004) Testing methods viscose, modal, lyocell and acetate staple fibres and tows. BISFA—The International Bureau for the Standardisation of Man-Made Fibres, BrusselsGoogle Scholar
  5. Coulsey HA, Smith SB (1996) The formation and structure of a new cellulosic fibre. Lenzinger Ber 75:51–61Google Scholar
  6. Cross MM (1965) Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems. J Colloid Sci 20(5):417–437. doi: 10.1016/0095-8522(65)90022-X CrossRefGoogle Scholar
  7. Doherty TV, Mora-Pale M, Foley SE, Linhardt RJ, Dordick JS (2010) Ionic liquid solvent properties as predictors of lignocellulose pretreatment efficacy. Green Chem 12(11):1967. doi: 10.1039/c0gc00206b CrossRefGoogle Scholar
  8. Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26(9):1473–1524. doi: 10.1016/s0079-6700(01)00025-9 CrossRefGoogle Scholar
  9. Gindl W, Reifferscheid M, Adusumalli RB, Weber H, Röder T, Sixta H, Schöberl T (2008a) Anisotropy of the modulus of elasticity in regenerated cellulose fibres related to molecular orientation. Polymer 49(3):792–799. doi: 10.1016/j.polymer.2007.12.016 CrossRefGoogle Scholar
  10. Gindl W, Reifferscheid M, Martinschitz KJ, Boesecke P, Keckes J (2008b) Reorientation of crystalline and noncrystalline regions in regenerated cellulose fibers and films tested in uniaxial tension. J Polym Sci B Polym Phys 46(3):297–304. doi: 10.1002/polb.21367 CrossRefGoogle Scholar
  11. Grasa GA, Kissling RM, Nolan SP (2002) N-heterocyclic carbenes as versatile nucleophilic catalysts for transesterification/acylation reactions. Org Lett 4(21):3583–3586. doi: 10.1021/ol0264760 CrossRefGoogle Scholar
  12. Gries T, Wirth B, Warnecke M, Schmenk B, Seide G (2011) Filament breaches during air-gap spinning. Chem Fibers Int 61:38–39Google Scholar
  13. Hämmerle FM (2011) The cellulose gap (the future of cellulose fibers). Lenzinger Ber 89:12–21Google Scholar
  14. Happel S (2014) Lenzing Fibers. Paper presented at the Mistra Future Fashion Symposium, Stockholm, Sweden, 27 May 2014Google Scholar
  15. Hauru LKJ, Hummel M, King AWT, Kilpeläinen IA, Sixta H (2012a) Role of solvent parameters in the regeneration of cellulose from ionic liquid solutions. Biomacromolecules 13(9):2896–2905. doi: 10.1021/bm300912y CrossRefGoogle Scholar
  16. Hauru LKJ, Hummel M, Sixta H (2012b) Fibre spinning from ionic liquid dope. 12th European workshop on lignocellulosics and pulp, Espoo, Finland, August 27-30, 2012. University of Helsinki, Helsinki, pp 272–275Google Scholar
  17. Hauru LKJ, Ma Y, Hummel M, Alekhina M, King AWT, Kilpeläinen IA, Penttilä PA, Serimaa R, Sixta H (2013) Enhancement of ionic liquid-aided fractionation of birchwood. Part 1: autohydrolysis pretreatment. RSC Adv 3:16365–16373. doi: 10.1039/C3RA41529E CrossRefGoogle Scholar
  18. Hearle JWS, Schawaller D (2000) Fibers, 2. Structure. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA. doi: 10.1002/14356007.a10_477.pub3
  19. Hummel M, Michud A, Sixta H (2011) Extensional rheology of cellulose-ionic liquid solutions. In: Nordic Rheology Conference, Helsinki, Finland, June 8-10, 2011. Annual Transactions of the Nordic Rheology Society, vol. 19, p 313Google Scholar
  20. Hummel M, Michud A, Tanttu M, Asaadi S, Ma Y, Hauru LKJ, Parviainen A, King AWT, Kilpeläinen I, Sixta H (2014) Ionic liquids for the production of man-made cellulosic fibers- opportunities and challenges. Adv Polym Sci (accepted)Google Scholar
  21. Jiang G, Yuan Y, Wang B, Yin X, Mukuze K, Huang W, Zhang Y, Wang H (2012) Analysis of regenerated cellulose fibers with ionic liquids as a solvent as spinning speed is increased. Cellulose 19(4):1075–1083. doi: 10.1007/s10570-012-9716-2 CrossRefGoogle Scholar
  22. King AWT, Asikkala J, Mutikainen I, Järvi P, Kilpeläinen I (2011) Distillable acid-base conjugate ionic liquids for cellulose dissolution and processing. Angew Chem 123(28):6425–6429. doi: 10.1002/ange.201100274 CrossRefGoogle Scholar
  23. King AWT, Parviainen A, Karhunen P, Matikainen J, Hauru LKJ, Sixta H, Kilpelainen I (2012) Relative and inherent reactivities of imidazolium-based ionic liquids: the implications for lignocellulose processing applications. RSC Adv 2:8020–8026. doi: 10.1039/c2ra21287k CrossRefGoogle Scholar
  24. Kong K, Eichhorn SJ (2005) Crystalline and amorphous deformation of process-controlled cellulose-II fibres. Polymer 46(17):6380–6390. doi: 10.1016/j.polymer.2005.04.096 CrossRefGoogle Scholar
  25. Kosan B, Michels C, Meister F (2008) Dissolution and forming of cellulose with ionic liquids. Cellulose 15(1):59–66. doi: 10.1007/s10570-007-9160-x CrossRefGoogle Scholar
  26. Krässig HA (1993) Cellulose: structure, accessibility and reactivity. Polymer Monographs, vol 11. Gordon and Breach Science Publishers, Chemin de la SallazGoogle Scholar
  27. Laus G, Bentivoglio G, Schottenberger H, Kahlenberg V, Kopacka H, Röder T, Sixta H (2005) Ionic liquids: current developments, potential and drawbacks for industrial applications. Lenzinger Ber 84:71–85Google Scholar
  28. Lenz J, Schurz J, Wrentschur E (1994) On the elongation mechanism of regenerated cellulose fibres. Holzforschung 48(s1):3–158. doi: 10.1515/hfsg.1994.48.s1.72 CrossRefGoogle Scholar
  29. Michud A, King A, Parviainen A, Sixta H, Hauru L, Hummel M, Kilpeläinen I (2014) Process for the production of shaped cellulose articles from a solution containing pulp dissolved in distillable ionic liquids. FI Patent Application PCT/FI2014/050238, 2014-04-04Google Scholar
  30. Mortimer SA, Péguy AA (1996a) The formation of structure in the spinning and coagulation of Lyocell fibres. Cellul Chem Technol 30:117–132Google Scholar
  31. Mortimer SA, Péguy AA (1996b) The influence of air-gap conditions on the structure formation of lyocell fibers. J Appl Polym Sci 60(10):1747–1756. doi: 10.1002/(SICI)1097-4628(19960606)60:10<1747::AID-APP28>3.0.CO;2-#
  32. Mortimer SA, Péguy AA, Ball RC (1996) Influence of the physical process parameters on the structure formation of Lyocell fibres. Cellul Chem Technol 30:251–266Google Scholar
  33. Northolt MG (1985) Are stronger cellulose fibres feasible? Lenzinger Ber 59:71–78Google Scholar
  34. Parviainen A, King AWT, Mutikainen I, Hummel M, Selg C, Hauru LKJ, Sixta H, Kilpeläinen I (2013) Predicting cellulose solvating capabilities of acid-base conjugate ionic liquids. ChemSusChem 6(11):2161–2169. doi: 10.1002/cssc.201300143 CrossRefGoogle Scholar
  35. Röder T, Moosbauer J, Kliba G, Schlader S, Zuckerstätter G, Sixta H (2009) Comparative characterisation of man-made regenerated cellulose fibers. Lenzinger Ber 87:98–105Google Scholar
  36. Schrems M, Ebner G, Liebner F, Becker E, Potthast A, Rosenau T (2010) Side reactions in the system cellulose/1-alkyl-3-methyl-imidazolium ionic liquid. In: Cellulose solvents: for analysis, shaping and chemical modification, vol 1033. ACS Symposium Series, vol 1033. American Chemical Society, pp 149–164. doi: 10.1021/bk-2010-1033.ch008
  37. Schuster KC, Aldred P, Villa M, Baron M, Loidl R, Biganska O, Patlazhan S, Navard P, Rüf H, Jericha E (2003) Characterising the emerging Lyocell fibres structures by ultra small neutron angle scattering (USANS). Lenzinger Ber 82:107–117Google Scholar
  38. Stibal W, Schwarz R, Kemp U, Bender K, Weger F, Stein M (2000) Fibers, 3. General production technology. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA. doi: 10.1002/14356007.a10_511
  39. Sun N, Swatloski RP, Maxim ML, Rahman M, Harland AG, Haque A, Spear SK, Daly DT, Rogers RD (2008) Magnetite-embedded cellulose fibers prepared from ionic liquid. J Mater Chem 18(3):283–290. doi: 10.1039/b713194a CrossRefGoogle Scholar
  40. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124(18):4974–4975. doi: 10.1021/ja025790m CrossRefGoogle Scholar
  41. Viswanathan G, Murugesan S, Pushparaj V, Nalamasu O, Ajayan PM, Linhardt RJ (2006) Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids. Biomacromolecules 7(2):415–418. doi: 10.1021/bm050837s CrossRefGoogle Scholar
  42. Zhang H, Wang ZG, Zhang ZN, Wu J, Zhang J, He JS (2007) Regenerated-cellulose/multiwalled-carbon-nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride. Adv Mater 19(5):698–704. doi: 10.1002/adma.200600442 CrossRefGoogle Scholar
  43. Ziabicki A (1976) Fundamentals of fibre formation. Wiley, LondonGoogle Scholar
  44. Zikeli S, Firgo H, Eichinger D, Jurkovic R (1992) Verfahren zur Herstellung eines cellulosischen Formkorpers. European Patent Application EP 0 494 852 A2, 1992-07-15Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Lauri K. J. Hauru
    • 1
  • Michael Hummel
    • 1
  • Anne Michud
    • 1
  • Herbert Sixta
    • 1
  1. 1.Department of Forest Products Technology, School of Chemical EngineeringAalto University, AaltoEspooFinland

Personalised recommendations