, Volume 21, Issue 6, pp 3897–3912 | Cite as

Conformational analysis of cellulose acetate in the dense amorphous state

  • Anthony Bocahut
  • Jean-Yves Delannoy
  • Caroll Vergelati
  • Karim Mazeau
Original Paper


Atomistic simulations of cellulose acetates (CAs) differing in their degree of substitution have been performed and analyzed in terms of conformation and interaction schemes. The stabilization of the structure of these cellulose derivatives is understood as a subtle balance between hydrogen bonds and the dipolar acetate-acetate interactions that are associated with important changes in the macromolecular conformation. On the one hand, cellulose and cellulose triacetate (CTA) are characterized by a single stabilization process (H-bonds and dipolar interactions respectively), showing a similar structure in their melt phase together with similar radii of gyration. On the other hand partially acetylated CAs combine both the conformational properties of cellulose and CTA but present an unexpected conformational domain, named C2, which induces a local hydrophobic pocket. These CAs are also further stabilized by hydrogen bonds between the hydroxyl and acetyl groups. Although idealized, the proposed models are realistic since they are in good agreement with literature experimental results.


Cellulose Cellulose acetate Amorphous Conformation Dipole interaction Hydrogen bonds 



The authors want to acknowledge fruitful discussions with D. Long (LPMA, Lyon), A. Fabre and P-Y. Lahary (Solvay Lyon) and L. Heux, Y. Nishiyama and H. Chanzy (CERMAV). Support from the IT teams of Solvay was highly appreciated for the organization of simulations.

Supplementary material

10570_2014_399_MOESM1_ESM.doc (522 kb)
Supplementary material 1 (DOC 522 kb)


  1. Abd Manaf ME, Tsuji M, Nobukawa S, Yamaguchi M (2011) Effect of moisture on the orientation birefringence of cellulose esters. Polymers 3:955–966CrossRefGoogle Scholar
  2. Ahlrichs R, Baer M, Haeser M, Horn H, Koelmel C (1989) Electronic structure calculations on workstation computers: the program system TURBOMOLE. Chem Phys Lett 162:165–169CrossRefGoogle Scholar
  3. Allen FH, Baalham CA, Lommerse JPM, Raithby PR (1998) Carbonyl–carbonyl interactions can be competitive with hydrogen bonds. Acta Crystallogr Sect B: Struct Sci B54:320–329CrossRefGoogle Scholar
  4. Almeida EVR, Morgado DL, Ramos LA, Frollini E (2013) Sisal cellulose and its acetates: generation of films and reinforcement in a one-pot process. Cellulose 20:453–465CrossRefGoogle Scholar
  5. Barnett CB, Naidoo KJ (2010) Ring puckering: a metric for evaluating the accuracy of AM1, PM3, PM3CARB-1, and SCC-DFTB carbohydrate QM/MM simulations. J Phys Chem B 114:17142–17154CrossRefGoogle Scholar
  6. Barud HS, de Araujo Junior AM, Santos DB, de Assuncao RMN, Meireles CS, Cerqueira DA, Rodrigues Filho G, Ribeiro CA, Messaddeq Y, Ribeiro SJL (2008) Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose. Thermochim Acta 471:61–69CrossRefGoogle Scholar
  7. Basu S, Khan AL, Cano-Odena A, Liu C, Vankelecom IFJ (2010) Membrane-based technologies for biogas separations. Chem Soc Rev 39:750–768CrossRefGoogle Scholar
  8. Behrends R, Kaatze U (2005) Molecular dynamics and conformational kinetics of mono- and disaccharides in aqueous solution. ChemPhysChem 6:1133–1145CrossRefGoogle Scholar
  9. Behrends R, Cowman MK, Eggers F, Eyring EM, Kaatze U, Majewski J, Petrucci S, Richmann K-H, Riech M (1997) Ultrasonic relaxation and fast chemical kinetics of some carbohydrate aqueous solutions. J Am Chem Soc 119:2182–2186CrossRefGoogle Scholar
  10. Bell NGA, Rigg G, Masters S, Bella J, Uhrin D (2013) Detecting low-level flexibility using residual dipolar couplings: a study of the conformation of cellobiose. Phys Chem Chem Phys 15:18223–18234CrossRefGoogle Scholar
  11. Bel’nikevich NG, Bolotnikova LS, Kramarenko LN, Naimark NI, Khripunov AK, Frenkel SY (1978) Spontaneous elongation of cellulose esters in water-phenol media. Vysokomol Soedin, Ser B 20:37–38Google Scholar
  12. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56CrossRefGoogle Scholar
  13. Biarnes X, Ardevol A, Planas A, Rovira C, Laio A, Parrinello M (2007) The conformational free energy landscape of β-D-glucopyranose. implications for substrate preactivation in β-glucoside hydrolases. J Am Chem Soc 129:10686–10693CrossRefGoogle Scholar
  14. Braun JL, Kadla JF (2013) CTA III: a third polymorph of cellulose triacetate. J Carbohydr Chem 32:120–138CrossRefGoogle Scholar
  15. Briggs JM, Nguyen TB, Jorgensen WL (1991) Monte Carlo simulations of liquid acetic acid and methyl acetate with the OPLS potential functions. J Phys Chem 95:3315–3322CrossRefGoogle Scholar
  16. Buchanan CM, Hyatt JA, Lowman DW (1989) Supramolecular structure and microscopic conformation of cellulose esters. J Am Chem Soc 111:7312–7319CrossRefGoogle Scholar
  17. Buntyakov AS, Aver’yanova VM (1972) Structure of solutions and films of cellulose acetate. J Polym Sci, Part C 38:109–120CrossRefGoogle Scholar
  18. Chen P, Nishiyama Y, Mazeau K (2012) Torsional entropy at the origin of the reversible temperature-induced phase transition of cellulose. Macromolecules 45:362–368CrossRefGoogle Scholar
  19. Chivrac F, Pollet E, Averous L (2009) Progress in nano-biocomposites based on polysaccharides and nanoclays. Mater Sci Eng, R R67:1–17CrossRefGoogle Scholar
  20. Cocinero EJ, Gamblin DP, Davis BG, Simons JP (2009) The building blocks of cellulose: the intrinsic conformational structures of cellobiose, its epimer, lactose, and their singly hydrated complexes. J Am Chem Soc 131:11117–11123CrossRefGoogle Scholar
  21. Consta S, Wilding NB, Frenkel D, Alexandrowicz Z (1999) Recoil growth: an efficient simulation method for multi-polymer systems. J Chem Phys 110:3220–3228CrossRefGoogle Scholar
  22. Cremer D, Pople JA (1975) General definition of ring puckering coordinates. J Am Chem Soc 97:1354–1358CrossRefGoogle Scholar
  23. Del Bubba M, Checchini L, Cincinelli A, Doumett S, Lepri L (2012) Enantiomeric resolution of chiral aromatic sulfoxides on non-commercial microcrystalline cellulose triacetate and commercial cellulose acetate plates. J Planar Chromatogr Mod TLC 25:498–503CrossRefGoogle Scholar
  24. Dobos AM, Stoica I, Olaru N, Olaru L, Ioanid EG, Ioan S (2012) Surface properties and biocompatibility of cellulose acetates. J Appl Polym Sci 125:2521–2528CrossRefGoogle Scholar
  25. Elidrissi A, El Barkany S, Amhamdi H, Maaroufi A, Hammouti B (2012) New approach to predict the solubility of polymers application: cellulose acetate at various DS, prepared from Alfa “Stipa-tenacissima” of Eastern Morocco. J Mater Environ Sci 3:270–285Google Scholar
  26. Ernst A, Vasella A (1996) Oligosaccharide analogs of polysaccharides. Part 8. Orthogonally protected cellobiose-derived dialkynes. A convenient method for the regioselective bromo- and protodegermylation of trimethylgermyl- and trimethylsilyl-protected dialkynes. Helv Chim Acta 79:1279–1294CrossRefGoogle Scholar
  27. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593CrossRefGoogle Scholar
  28. French AD (2012) Combining computational chemistry and crystallography for a better understanding of the structure of cellulose. Adv Carbohydr Chem Biochem 67:19–93CrossRefGoogle Scholar
  29. French AD, Johnson GP (2009) Cellulose and the twofold screw axis: modeling and experimental arguments. Cellulose 16:959–973CrossRefGoogle Scholar
  30. French AD, Kelterer A-M, Johnson GP, Dowd MK, Cramer CJ (2000) HF/6-31G energy surfaces for disaccharide analogs. J Comput Chem 22:65–78CrossRefGoogle Scholar
  31. French AD, Concha M, Dowd MK, Stevens ED (2014) Electron (charge) density studies of cellulose models. Cellulose 21:1051–1063CrossRefGoogle Scholar
  32. Guvench O, Hatcher E, Venable RM, Pastor RW, MacKerell AD Jr (2009) CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses. J Chem Theory Comput 5:2353–2370CrossRefGoogle Scholar
  33. Heinze T, Liebert T (2004) Chemical characteristics of cellulose acetate. Macromol Symp 208:167–237CrossRefGoogle Scholar
  34. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472CrossRefGoogle Scholar
  35. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447CrossRefGoogle Scholar
  36. Horii F, Hirai A, Kitamaru R (1983) Solid-state carbon-13 NMR study of conformations of oligosaccharides and cellulose. Conformation of CH2OH group about the exo-cyclic carbon–carbon bond. Polym Bull 10:357–361CrossRefGoogle Scholar
  37. Ioan S, Necula AM, Stoica I, Olaru N, Olaru L, Ioanid GE (2010) Surface properties of cellulose acetate. High Perform Polym 22:598–608CrossRefGoogle Scholar
  38. Jeffries R, Wellard HJ (1956) The effect of treatment in aqueous phenol solutions on the physical properties of secondary cellulose acetate filaments. J Text Inst 47:549–566CrossRefGoogle Scholar
  39. Kamel S, Ali N, Jahangir K, Shah SM, El-Gendy AA (2008) Pharmaceutical significance of cellulose: a review. Express Polym Lett 2:758–778CrossRefGoogle Scholar
  40. Kamide K (2005) Cellulose and cellulose derivatives. Molecular characterization and its applications. Elsevier, AmsterdamGoogle Scholar
  41. Kamide K, Saito M (1985) Thermal analysis of cellulose acetate solids with total degrees of substitution of 0.49, 1.75, 2.46, and 2.92. Polym J 17:919–928CrossRefGoogle Scholar
  42. Kamide K, Okajima K, Kowsaka K, Matsui T (1987) Solubility of cellulose acetate prepared by different methods and its corelationships with average acetyl group distribution on glucopyranose units. Polym J 19:1405–1412CrossRefGoogle Scholar
  43. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105:6474–6487CrossRefGoogle Scholar
  44. Kobayashi T, Hayakawa D, Khishigjargal T, Ueda K (2014) Investigation of the structure and interaction of cellulose triacetate I crystal using ab initio calculations. Carbohydr Res 388:61–66CrossRefGoogle Scholar
  45. Kono H, Erata T, Takai M (2002) CP/MAS 13C NMR study of cellulose and cellulose derivatives. 2. Complete assignment of the 13C resonance for the ring carbons of cellulose triacetate polymorphs. J Am Chem Soc 124:7512–7518CrossRefGoogle Scholar
  46. Kony D, Damm W, Stoll S, Van Gunsteren WF (2002) An improved OPLS-AA force field for carbohydrates. J Comput Chem 23:1416–1429CrossRefGoogle Scholar
  47. Kowsaka K, Okajima K, Kamide K (1988) Determination of the distribution of the substituent group in cellulose acetate by full assignment of all carbonyl carbon peaks of carbon-13 (proton-decoupled) NMR spectra. Polym J 20:827–836CrossRefGoogle Scholar
  48. Kroon-Batenburg LMJ, Kruiskamp PH, Vliegenthart JFG, Kroon J (1997) Estimation of the persistence length of polymers by MD simulations on small fragments in solution. application to cellulose. J Phys Chem B 101:8454–8459CrossRefGoogle Scholar
  49. Kulasinski K, Keten S, Churakov SV, Derome D, Carmeliet J (2014) A comparative molecular dynamics study of crystalline, paracrystalline and amorphous states of cellulose. Cellulose 21:1103–1116CrossRefGoogle Scholar
  50. Kusumi R, Inoue Y, Shirakawa M, Miyashita Y, Nishio Y (2008) Cellulose alkyl ester/poly(ε-caprolactone) blends: characterization of miscibility and crystallization behaviour. Cellulose 15:1–16CrossRefGoogle Scholar
  51. Kusumi R, Teramoto Y, Nishio Y (2011) Structural characterization of poly(ε-caprolactone)-grafted cellulose acetate and butyrate by solid-state 13C NMR, dynamic mechanical, and dielectric relaxation analyses. Polymer 52:5912–5921CrossRefGoogle Scholar
  52. Lepri L, Cincinelli A, Checchini L, Del Bubba M (2010) Structure and substituent effects on retention and chiral resolution of ketones and alcohols on microcrystalline cellulose triacetate plates. Chromatographia 71:685–694CrossRefGoogle Scholar
  53. Leung F, Chanzy HD, Perez S, Marchessault RH (1976) Crystal structure of β-D-acetyl cellobiose, C28H38O19. Can J Chem 54:1365–1371CrossRefGoogle Scholar
  54. Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317Google Scholar
  55. Malm CJ, Barkey KT, Salo M, May DC (1957) Far-hydrolyzed cellulose acetates-preparation, properties, and uses. J Ind Eng Chem 49:79–83CrossRefGoogle Scholar
  56. Mandelkern L, Flory PJ (1951) Melting and glassy-state transitions in cellulose esters and their mixtures with diluents. J Am Chem Soc 73:3206–3212CrossRefGoogle Scholar
  57. Mason PE, Neilson GW, Enderby JE, Saboungi M-L, Cuello G, Brady JW (2006) Neutron diffraction and simulation studies of the exocyclic hydroxymethyl conformation of glucose. J Chem Phys 125:224505/1–224505/9Google Scholar
  58. Mayes HB, Broadbelt LJ, Beckham GT (2014) How sugars pucker: electronic structure calculations map the kinetic landscape of five biologically paramount monosaccharides and their implications for enzymatic catalysis. J Am Chem Soc 136:1008–1022CrossRefGoogle Scholar
  59. Mayo SL, Olafson BD, Goddard WA III (1990) DREIDING: a generic force field for molecular simulations. J Phys Chem 94:8897–8909CrossRefGoogle Scholar
  60. Mazeau K, Heux L (2003) Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J Phys Chem B 107:2394–2403CrossRefGoogle Scholar
  61. Misra M, Seydibeyoglu O, Ray D, Das K, Mohanty A (2011) Biodegradable nanocomposites from cellulosic plastics and cellulosic fiber. Monogr Phys Chem Mater 68:123–165Google Scholar
  62. Mori T, Chikayama E, Tsuboi Y, Ishida N, Shisa N, Noritake Y, Moriya S, Kikuchi J (2012) Exploring the conformational space of amorphous cellulose using NMR chemical shifts. Carbohydr Polym 90:1197–1203CrossRefGoogle Scholar
  63. Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular-wave functions. IV. Bonding and antibonding in LCAO and valence-bond theories. J Chem Phys 23:2343–2346CrossRefGoogle Scholar
  64. Nagy PI, Tejada FR, Sarver JG, Messer WS Jr (2004) Conformational analysis and derivation of molecular mechanics parameters for esters and thioesters. J Phys Chem A 108:10173–10185CrossRefGoogle Scholar
  65. Necula AM, Olaru N, Olaru L, Ioan S (2008) Influence of the substitution degree on the dilute solution properties of cellulose acetate. J Macromol Sci Part B Phys 47:913–928CrossRefGoogle Scholar
  66. Neyertz S (2007) Tutorial: molecular dynamics simulations of microstructure and transport phenomena in glassy polymers. Soft Mater 4:15–83CrossRefGoogle Scholar
  67. Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249CrossRefGoogle Scholar
  68. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron x-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRefGoogle Scholar
  69. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306CrossRefGoogle Scholar
  70. O’Dell WB, Baker DC, McLain SE (2012) Structural evidence for inter-residue hydrogen bonding observed for cellobiose in aqueous solution. PLoS ONE 7:e45311CrossRefGoogle Scholar
  71. Perez S, Brisse F (1977) The crystal and molecular structure of a trisaccharide, β-cellotriose undecaacetate: 1,2,3,6-tetra-O-acetyl-4-O-[2,3,6-tri-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-β-D-glucopyranosyl]-β-D-glucopyranose. Acta Crystallogr, Sect B B33:2578–2584CrossRefGoogle Scholar
  72. Quintana R, Persenaire O, Bonnaud L, Dubois P (2012) Recent advances in (reactive) melt processing of cellulose acetate and related biodegradable bio-compositions. Polym Chem 3:591–595CrossRefGoogle Scholar
  73. Ramesh S, Shanti R, Morris E (2012) Plasticizing effect of 1-allyl-3-methylimidazolium chloride in cellulose acetate based polymer electrolytes. Carbohydr Polym 87:2624–2629CrossRefGoogle Scholar
  74. Rana D, Matsuura T, Khulbe KC, Feng C (2006) Study on the spin probe added polymeric dense membranes by 13C solid-state nuclear magnetic resonance spectroscopy. J Appl Polym Sci 99:3062–3069CrossRefGoogle Scholar
  75. Roche E, Chanzy H, Boudeulle M, Marchessault RH, Sundararajan P (1978) Three-dimensional crystalline structure of cellulose triacetate II. Macromolecules 11:86–94CrossRefGoogle Scholar
  76. Rustemeyer P (2004) History of CA and evolution of the markets. Macromol Symp 208:1–6CrossRefGoogle Scholar
  77. Sato H, Suttiwijitpukdee N, Hashimoto T, Ozaki Y (2012) Simultaneous synchrotron SAXS/WAXD study of composition fluctuations, cold-crystallization, and melting in biodegradable polymer blends of cellulose acetate butyrate and poly(3-hydroxybutyrate). Macromolecules 45:2783–2795CrossRefGoogle Scholar
  78. Scholes CA, Stevens GW, Kentish SE (2012) Membrane gas separation applications in natural gas processing. Fuel 96:15–28CrossRefGoogle Scholar
  79. Shen T, Langan P, French AD, Johnson GP, Gnanakaran S (2009) Conformational flexibility of soluble cellulose oligomers: chain length and temperature dependence. J Am Chem Soc 131:14786–14794CrossRefGoogle Scholar
  80. Sikorski P, Wada M, Heux L, Shintani H, Stokke BT (2004) Crystal structure of cellulose triacetate I. Macromolecules 37:4547–4553CrossRefGoogle Scholar
  81. Sobana S, Panda RC (2011) Identification, modelling, and control of continuous reverse osmosis desalination system: a review. Sep Sci Technol 46:551–560CrossRefGoogle Scholar
  82. Songsurang K, Miyagawa A, Abd Manaf ME, Phulkerd P, Nobukawa S, Yamaguchi M (2013) Optical anisotropy in solution-cast film of cellulose triacetate. Cellulose 20:83–96CrossRefGoogle Scholar
  83. Spiwok V, Kralova B, Tvaroska I (2010) Modelling of β-D-glucopyranose ring distortion in different force fields: a metadynamics study. Carbohydr Res 345:530–537CrossRefGoogle Scholar
  84. Steinmeier H (2004) Chemistry of cellulose acetylation. Macromol Symp 208:49–60CrossRefGoogle Scholar
  85. Stortz CA, Johnson GP, French AD, Csonka GI (2009) Comparison of different force fields for the study of disaccharides. Carbohydr Res 344:2217–2228CrossRefGoogle Scholar
  86. Szamel G, Domjan A, Klebert S, Pukanszky B (2008) Molecular structure and properties of cellulose acetate chemically modified with caprolactone. Eur Polym J 44:357–365CrossRefGoogle Scholar
  87. Theodorou DN, Suter UW (1985) Detailed molecular structure of a vinyl polymer glass. Macromolecules 18:1467–1478CrossRefGoogle Scholar
  88. Thibodeaux DP, Johnson GP, Stevens ED, French AD (2002) Crystal structure of penta-O-acetyl-β-D-galactopyranose with modeling of the conformation of the acetate groups. Carbohydr Res 337:2301–2310CrossRefGoogle Scholar
  89. Vallejos ME, Peresin MS, Rojas OJ (2012) All-cellulose composite fibers obtained by electrospinning dispersions of cellulose acetate and cellulose nanocrystals. J Polym Environ 20:1075–1083CrossRefGoogle Scholar
  90. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718CrossRefGoogle Scholar
  91. Wada M, Chanzy H, Nishiyama Y, Langan P (2004) Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules 37:8548–8555CrossRefGoogle Scholar
  92. Wan S, Sun Y, Qi X, Tan F (2012) Improved bioavailability of poorly water-soluble drug curcumin in cellulose acetate solid dispersion. AAPS PharmSciTech 13:159–166CrossRefGoogle Scholar
  93. Yang Z-Y, Wang W-J, Shao Z-Q, Zhu H-D, Li Y-H, Wang F-J (2013) The transparency and mechanical properties of cellulose acetate nanocomposites using cellulose nanowhiskers as fillers. Cellulose 20:159–168CrossRefGoogle Scholar
  94. Yoshioka M, Hagiwara N, Shiraishi N (1999) Thermo-plasticization of cellulose acetates by grafting of cyclic esters. Cellulose 6:193–212CrossRefGoogle Scholar
  95. Yoshitake S, Suzuki T, Miyashita Y, Aoki D, Teramoto Y, Nishio Y (2013) Nanoincorporation of layered double hydroxides into a miscible blend system of cellulose acetate with poly(acryloyl morpholine). Carbohydr Polym 93:331–338CrossRefGoogle Scholar
  96. Zugenmaier P (2004) Characterization and physical properties of cellulose acetates. Macromol Symp 208:81–166CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Anthony Bocahut
    • 1
    • 2
  • Jean-Yves Delannoy
    • 3
  • Caroll Vergelati
    • 3
  • Karim Mazeau
    • 1
    • 2
  1. 1.CERMAVUniversity of Grenoble AlpesGrenobleFrance
  2. 2.CERMAVCNRSGrenobleFrance
  3. 3.ARTI/APMDR&I Center LyonSaint FonsFrance

Personalised recommendations