Skip to main content
Log in

Synthesis and crystallization-induced microphase separation of cellulose triacetate-block-poly(γ-benzyl-l-glutamate)

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This article describes the first observation of crystallization-induced microphase separation in thin film and bulk cellulose triacetate-block-poly(γ-benzyl-l-glutamate) (PBLG) [cellulose triacetate (CTA)-b-PBLG] via copper-catalyzed azide–alkyne cycloaddition (CuAAC) between azido-functionalized CTA at the reducing end and alkyne-functionalized PBLG at the C-terminus. The reactivity of the amino group at the C-1 position of the glucosyl residue at the reducing end for the initiation reaction of the ring-opening polymerization (ROP) of γ-benzyl-l-glutamate N-carboxyanhydride was compared to that of the azido group at the reducing end of CTA for CuAAC, with PBLG bearing an alkyne group at the C-terminus. Although the amino group at the reducing end of CTA exhibited no reactivity as a macroinitiator for ROP of BLG, the azido group at the reducing end of CTA reacted with the alkyne group at the C-terminus of PBLG to afford CTA-b-PBLG. The structure of CTA-b-PBLG was characterized by 1H- and 13C-nuclear magnetic resonance spectroscopies, infrared spectroscopy, differential scanning calorimetry, and wide angle X-ray diffractometry. Microphase separation of the film and bulk of CTA-b-PBLG was clearly shown by atomic force microscopy, field-emission scanning electron microscopy, and transmission electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agut W, Agnaou R, Lecommandoux S, Taton D (2008) Synthesis of block copolypeptides by click chemistry. Macromol Rapid Commun 29:1147–1155. doi:10.1002/Marc.200800123

    Article  CAS  Google Scholar 

  • Ando I, Yamada S, Sanefuji T, Shoji A, Uematsu I (1987) Effect of pressure on the molecular motion of a poly(γ-benzyl L-glutamate) lyotropic liquid crystal as studied by proton nuclear magnetic resonance. Polymer 28:716–720. doi:10.1016/0032-3861(87)90218-7

    Article  CAS  Google Scholar 

  • Caillol S, Lecommandoux S, Mingotaud A-F, Schappacher M, Soum A, Bryson N, Meyrueix R (2003) Synthesis and self-assembly properties of peptide-polylactide block copolymers. Macromolecules 36:1118–1124. doi:10.1021/ma021187c

    Article  CAS  Google Scholar 

  • Cao H, Yao J, Shao Z (2012) Synthesis of poly(γ-benzyl-L-glutamate) with well-defined terminal structures and its block polypeptides with alanine, leucine and phenylalanine. Polym Int 61:774–779. doi:10.1002/pi.4138

    Article  CAS  Google Scholar 

  • Ceresa RJ (1961) The synthesis of block and graft copolymer of cellulose and its derivatives. Polymer 2:213–219

    Article  CAS  Google Scholar 

  • Chen D (2013) Crystal behavior of semicrystalline polystyrene-block-poly(L-lactide) diblock copolymer in thin films with various structures. Polym Int 62:1343–1350. doi:10.1002/pi.4426

    Article  CAS  Google Scholar 

  • Chirgadze YN, Brazhnikov EV (1974) Intensities and other spectral parameters of infrared amide bands of polypeptides in the α-helical form. Biopolymers 13:1701–1712. doi:10.1002/bip.1974.360130902

    Article  CAS  Google Scholar 

  • Chirgadze YN, Brazhnikov EV, Nevskaya NA (1976) Intramolecular distortion of the α-helical structure of polypeptides. J Mol Biol 102:781–792. doi:10.1016/0022-2836(76)90291-6

    Article  CAS  Google Scholar 

  • Daly WH, Poche D (1988) The preparation of N-Carboxyanhydrides of alpha-amino-acids using bis(trichloromethyl)carbonate. Tetrahedron Lett 29:5859–5862. doi:10.1016/S0040-4039(00)82209-1

    Article  CAS  Google Scholar 

  • de Oliveira W, Glasser WG (1994) Multiphase materials with lignin 13. Block-copolymers with cellulose propionate. Polymer 35:1977–1985

    Article  Google Scholar 

  • Dulmage WJ (1957) The molecular and crystal structure of cellulose triacetate. J Polym Sci 26:277–288. doi:10.1002/Pol.1957.1202611402

    Article  CAS  Google Scholar 

  • Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26:1605–1688. doi:10.1016/S0079-6700(01)00027-2

    Article  CAS  Google Scholar 

  • Enomoto Y, Kamitakahara H, Takano T, Nakatsubo F (2006) Synthesis of diblock copolymers with cellulose derivatives. 3. Cellulose derivatives carrying a single pyrene group at the reducing-end and fluorescent studies of their self-assembly systems in aqueous NaOH solutions. Cellulose 13:437–448

    Article  CAS  Google Scholar 

  • Enomoto-Rogers Y, Kamitakahara H, Yoshinaga A, Takano T (2011) Synthesis of diblock copolymers with cellulose derivatives 4. Self-assembled nanoparticles of amphiphilic cellulose derivatives carrying a single pyrene group at the reducing-end. Cellulose 18:1005–1014. doi:10.1007/S10570-011-9549-4

    Article  CAS  Google Scholar 

  • Farrar D, Yu MS, West JE, Moon W (2010) Piezoelectric biopolymer-polymer composite films and microfibers. Johns Hopkins APL Tech Dig 28:258–259

    CAS  Google Scholar 

  • Feger C, Cantow HJ (1980) Cellulose containing block copolymers 1. Synthesis of trimethylcellulose-(b-poly(oxytetramethylene))-star block copolymers. Polym Bull 3:407–413

    CAS  Google Scholar 

  • Floudas G, Papadopoulos P, Klok HA, Vandermeulen GWM, Rodriguez-Hernandez J (2003) Hierarchical self-assembly of poly(gamma-benzyl-L-glutamate)-poly(ethylene glycol)-poly(gamma-benzyl-L-glutamate) rod-coil-rod triblock copolymers. Macromolecules 36:3673–3683. doi:10.1021/Ma025918k

    Article  CAS  Google Scholar 

  • Habraken GJM, Wilsens KHRM, Koning CE, Heise A (2011) Optimization of N-carboxyanhydride (NCA) polymerization by variation of reaction temperature and pressure. Polym Chem 2:1322–1330. doi:10.1039/C1py00079a

    Article  CAS  Google Scholar 

  • Hiratsuka N, Shiba K, Shinomura K, Hosaki S, Cho H, Nagasaki A, Kobayashi S (1994) Urinary protein-fractions in healthy-subjects using cellulose-acetate membrane electrophoresis followed by staining with acid-violet-17. Biol Pharm Bull 17:1355–1357

    Article  CAS  Google Scholar 

  • Howell B, Reneker DH (1990) Morphology of polymer-films and single molecules. J Appl Polym Sci 40:1663–1682. doi:10.1002/App.1990.070400921

    Article  CAS  Google Scholar 

  • Ibarboure E, Papon E, Rodriguez-Hernandez J (2007) Nanostructured thermotropic PBLG–PDMS–PBLG block copolymers. Polymer 48:3717–3725. doi:10.1016/j.polymer.2007.04.046

    Article  CAS  Google Scholar 

  • Jadage CD, Lonikar SV, Wadgaonkar PP (2004) Starch and cellulose based graft and block copolymers. In: Society for polymer science, India, pp PD.1/1–PD.1/5

  • Kadokawa J-I, Karasu M, Tagaya H, Chiba K (1996) Synthesis of a block copolymer consisting of oligocellulose and oligochitin. J Macromol Sci, Pure Appl Chem A33:1735–1743. doi:10.1080/10601329608010937

    Article  CAS  Google Scholar 

  • Kamatani A, Kikuchi Y (2002) Carbohydrate diblock and triblock copolymers with desirable molecular weights and their manufacture. JP2002146025A,

  • Kamitakahara H, Nakatsubo F (2005) Synthesis of diblock copolymers with cellulose derivatives. 1. Model study with azidoalkyl carboxylic acid and cellobiosylamine derivative. Cellulose 12:209–219

    Article  CAS  Google Scholar 

  • Kamitakahara H, Enomoto Y, Hasegawa C, Nakatsubo F (2005) Synthesis of diblock copolymers with cellulose derivatives. 2. Characterization and thermal properties of cellulose triacetate-block-oligoamide-15. Cellulose 12:527–541

    Article  CAS  Google Scholar 

  • Kang IK, Ito Y, Sisido M, Imanishi Y (1988) Gas permeability of the film of block and graft copolymers of polydimethylsiloxane and poly(gamma-benzyl L-glutamate). Biomaterials 9:349–355

    Article  CAS  Google Scholar 

  • Kim S, Stannett VT, Gilbert RD (1973) A new class of biodegradable polymers. J Polym Sci Polym Lett 11:731–735

    Article  CAS  Google Scholar 

  • Kim S, Stannett VT, Gilbert RD (1976) Biodegradable cellulose block copolymers. J Macromol Sci Pt A Chem A10:671–679

    Article  CAS  Google Scholar 

  • Koleske JV, Lundberg RD (1969) Secondary transitions in poly(γ-benzyl-L-glutamate) and in poly(γ-benzyl-DL-glutamate). Macromolecules 2:438–440. doi:10.1021/ma60010a024

    Article  CAS  Google Scholar 

  • Kubota R, Machii R, Hiratsuka N, Hotta O, Itoh Y, Kobayashi S, Shiba K (2003) Cellulose acetate membrane electrophoresis in the analysis of urinary proteins in patients with tubulointerstitial nephritis. J Clinic Lab Anal 17:44–51. doi:10.1002/Jcla.10066

    Article  CAS  Google Scholar 

  • Lonikar SV, Gilbert RD, Fornes RE, Stejskal E (1990) Block copolymers of polysaccharides and polyamino acids. Abstracts of papers of the American Chemical Society 199:364-POLY

  • Lopez-Carrasquero F, Aleman C, Munoz-Guerra S (1995) Conformational analysis of helical poly(β-L-aspartate)s by IR dichroism. Biopolymers 36:263–271

    Article  CAS  Google Scholar 

  • Machii R, Kubota R, Hiratsuka N, Sugimoto K, Masudo R, Kurihara Y, Kobayashi S, Shiba K (2004) Urinary protein fraction in healthy subjects using cellulose acetate membrane electrophoresis followed by colloidal silver staining. J Clinic Lab Anal 18:231–236. doi:10.1002/Jcla.20028

    Article  CAS  Google Scholar 

  • Machii R, Sakatume M, Kubota R, Kobayashi S, Gejyo F, Shiba K (2005) Examination of the molecular diversity of alpha(1) antitrypsin in urine: deficit of an alpha(1) globulin fraction on cellulose acetate membrane electrophoresis. J Clinic Lab Anal 19:16–21. doi:10.1002/Jcla.20049

    Article  CAS  Google Scholar 

  • Mckinnon AJ, Tobolsky AV (1966) Structure and transition in solid state of a helical macromolecule. J Phys Chem 70:1453. doi:10.1021/J100877a018

    Article  CAS  Google Scholar 

  • Mezger T, Cantow HJ (1983a) Cellulose containing block co-polymers.4. Cellulose triester macroinitiators. Angew Makromol Chem 116:13–27

    Article  CAS  Google Scholar 

  • Mezger T, Cantow HJ (1983b) Cellulose containing block co-polymers. 5. Threeblock co-polymer syntheses via macroinitiator. Makromol Chem, Rapid Commun 4:313–320

    Article  CAS  Google Scholar 

  • Mezger T, Cantow HJ (1984) Cellulose-containing triblock copolymers—syntheses via cellulosic dithiodiaryl photoinitiators. Polym Photochem 5:49–56

    Article  CAS  Google Scholar 

  • Miyazawa T (1960) Perturbation treatment of the characteristic vibrations of polypeptide chains in various configurations. J Chem Phys 32:1647–1652. doi:10.1063/1.1730999

    Article  CAS  Google Scholar 

  • Nakagawa A, Kamitakahara H, Takano T (2012) Synthesis and thermoreversible gelation of diblock methylcellulose analogues via Huisgen 1,3-dipolar cycloaddition. Cellulose 19:1315–1326. doi:10.1007/S10570-012-9703-7

    Article  CAS  Google Scholar 

  • Papadopoulos P, Floudas G, Klok HA, Schnell I, Pakula T (2004) Self-assembly and dynamics of poly(γ-benzyl-L-glutamate) peptides. Biomacromolecules 5:81–91. doi:10.1021/bm034291q

    Article  CAS  Google Scholar 

  • Papadopoulos P, Floudas G, Schnell I, Aliferis T, Iatrou H, Hadjichristidis N (2005) Nanodomain-induced chain folding in poly(gamma-benzyl-L-glutamate)-b-polyglycine diblock copolymers. Biomacromolecules 6:2352–2361. doi:10.1021/Bm0501860

    Article  CAS  Google Scholar 

  • Pohjola L, Eklund V (1977) Polyurethane block copolymers from cellulose acetate. Pap Puu 3:117–120

    Google Scholar 

  • Roche E, Chanzy H, Boudeulle M, Marchessault RH, Sundararajan P (1978) 3-dimensional crystalline-structure of cellulose triacetate-ii. Macromolecules 11:86–94. doi:10.1021/Ma60061a016

    Article  CAS  Google Scholar 

  • Sakaguchi M, Ohura T, Iwata T, Takahashi S, Akai S, Kan T, Murai H, Fujiwara M, Watanabe O, Narita M (2010) Diblock copolymer of bacterial cellulose and poly(methyl methacrylate) initiated by chain-end-type radicals produced by mechanical scission of glycosidic linkages of bacterial cellulose. Biomacromolecules 11:3059–3066. doi:10.1021/Bm100879v

    Article  CAS  Google Scholar 

  • Sanchez-Ferrer A, Mezzenga R (2010) Secondary structure-induced micro- and macrophase separation in rod-coil polypeptide diblock, triblock, and star-block copolymers. Macromolecules (Washington DC, U S) 43:1093–1100. doi:10.1021/ma901951s

  • Sanefuji T, Ando I, Inoue Y, Uematsu I, Shoji A (1985) Effect of pressure on the magnetic orientation of the poly(γ-benzyl L-glutamate) liquid crystal as studied by proton NMR under high pressure. Macromolecules 18:583–585. doi:10.1021/ma00145a048

    Article  CAS  Google Scholar 

  • Toriumi H, Uematsu I (1984) Optical properties of lyotropic poly(γ-benzyl L-glutamate) liquid crystals. Mol Cryst Liq Cryst 116:21–33. doi:10.1080/00268948408072493

    Article  CAS  Google Scholar 

  • Toriumi H, Kusumi Y, Uematsu I, Uematsu Y (1979) Thermally induced inversion of the cholesteric sense in lyotropic polypeptide liquid crystals. Polym J 11:863–869. doi:10.1295/polymj.11.863

    Article  CAS  Google Scholar 

  • Toriumi H, Minakuchi S, Uematsu Y, Uematsu I (1980) Helical twisting power of poly(γ-benzyl L-glutamate) liquid crystals in mixed solvents. Polym J (Tokyo) 12:431–437. doi:10.1295/polymj.12.431

    Article  CAS  Google Scholar 

  • Toriumi H, Minakuchi S, Uematsu I (1981) Concentration and temperature dependence of the helical twisting power of poly(γ-benzyl L-glutamate) liquid crystals in m-cresol. J Polym Sci Polym Phys Ed 19:1167–1169. doi:10.1002/pol.1981.180190715

    Article  CAS  Google Scholar 

  • Toriumi H, Yahagi K, Uematsu I, Uematsu Y (1983) Cholesteric structure of lyotropic poly(γ-benzyl L-glutamate) liquid crystals. Mol Cryst Liq Cryst 94:267–284. doi:10.1080/15421408308084262

    Article  CAS  Google Scholar 

  • Trent JS, Scheinbeim JI, Couchman PR (1983) Ruthenium tetraoxide staining of polymers for electron-microscopy. Macromolecules 16:589–598. doi:10.1021/Ma00238a021

    Article  CAS  Google Scholar 

  • Tsai ML, Chen SH, Marshall KL, Jacobs SD (1990) Thermotropic and optical properties of chiral nematic polymers. Int J Thermophys 11:213–223. doi:10.1007/bf00503872

    Article  CAS  Google Scholar 

  • Uematsu I, Uematsu Y (1984) Polypeptide liquid crystals. Adv Polym Sci 59:37–73

    Article  CAS  Google Scholar 

  • Vivatpanachart S, Tsujita Y, Takizawa A (1981) Gas permeability of the racemic form of poly(γ-benzyl glutamate). Makromol Chem 182:1197–1206

    Article  CAS  Google Scholar 

  • Wang K, Liang LY, Lin SL, He XH (2008) Synthesis of well-defined ABC triblock copolymers with polypeptide segments by ATRP and click reactions. Eur Polym J 44:3370–3376. doi:10.1016/J.Eurpolymj.07.042

    Article  CAS  Google Scholar 

  • Watanabe J, Uematsu I (1984) Anomalous properties of poly(γ-benzyl L-glutamate) film composed of unusual 7/2 helices. Polymer 25:1711–1717. doi:10.1016/0032-3861(84)90242-8

    Article  CAS  Google Scholar 

  • Weiss RA, Shao L, Lundberg RD (1992) Melt-processable polypeptide/ionomer molecular composites. Macromolecules 25:6370–6372. doi:10.1021/ma00049a039

    Article  CAS  Google Scholar 

  • Yagi S, Kasuya N, Fukuda K (2010) Synthesis and characterization of cellulose-b-polystyrene. Polym J (Tokyo, Jpn) 42:342–348. doi:10.1038/pj.2009.342

  • Zhou QH, Zheng JK, Shen ZH, Fan XH, Chen XF, Zhou QF (2010) Synthesis and hierarchical self-assembly of rod rod block copolymers via click chemistry between mesogen-jacketed liquid crystalline polymers and helical polypeptides. Macromolecules 43:5637–5646. doi:10.1021/Ma1007418

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to Prof. Yoshiyuki Nishio of Kyoto University for the discussion on thermal analysis. We thank the Japan Society for the Promotion of Science (JSPS) for their financial support of this study, in part, through Grant-in-Aid for Scientific Research (nos. 21580205 and 24380092), and a Sekisui Chemical Grant Program for Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kamitakahara.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamitakahara, H., Baba, A., Yoshinaga, A. et al. Synthesis and crystallization-induced microphase separation of cellulose triacetate-block-poly(γ-benzyl-l-glutamate). Cellulose 21, 3323–3338 (2014). https://doi.org/10.1007/s10570-014-0383-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0383-3

Keywords

Navigation