, Volume 21, Issue 4, pp 2599–2609 | Cite as

From paper to nanopaper: evolution of mechanical and physical properties

  • I. GonzálezEmail author
  • M. Alcalà
  • G. Chinga-Carrasco
  • F. Vilaseca
  • S. Boufi
  • P. Mutjé
Original Paper


In the present work the evolution of physical and mechanical properties of papers and nanopapers is studied. Handsheets made of eucalyptus fibres reinforced with 0, 25, 50, 75 and 100 wt% of nanofibrillated cellulose (NFC) content were fabricated using a Rapid Köthen-like equipment. The obtained papers and nanopapers were physical- and mechanically-characterized. The results showed a significant increase in density and a reduction of porosity in the samples during their transition from paper to nanopaper; besides, nanopapers were more transparent and smoother than normal papers. These physical changes where more evident with increasing amounts of NFC. Regarding mechanical properties, nanopapers with a 100 wt% content of NFC improved their strength and rigidity in 228 and 317 %, respectively, in comparison with normal papers. The evolution of strength and rigidity from paper to nanopaper was linear in relation to the amount of NFC, which means that the ultimate tensile strength was mainly dependant on nanofibril failure.


Nanofibrillated cellulose Nanopaper Eucalyptus pulp Mechanical properties Physical properties 



The authors are thankful to the Spanish Ministry of Science and Innovation for the financial support given by the projects CTQ2010-21660-C03-03 and CTM2011-28506-C02-01 to develop this study.


  1. Ahola S, Österberg M, Laine J (2008) Cellulose nanofibrils adsorption with poly(amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive. Cellulose 15:303–314CrossRefGoogle Scholar
  2. Alcala M, González I, Boufi S, Vilaseca F, Mutjé P (2013) All-cellulose composites from unbleached hardwood kraft pulp reinforced with nanofibrillated cellulose. Cellulose 20(6):2909–2921CrossRefGoogle Scholar
  3. Alila S, Besbes I, Rei Vilar M, Mutjé P, Boufi S (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind Crops Prod 41:250–259CrossRefGoogle Scholar
  4. Andresen M, Stenstad P, Moretro T, Langsrud S, Syverud K, Johansson LS, Stenius P (2007) Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose. Biomacromolecules 8(7):2149–2155CrossRefGoogle Scholar
  5. Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84(3):975–983CrossRefGoogle Scholar
  6. Carrasco F, Mutjé P, Pèlach MA (1996) Refining of bleached cellulosic pulps: characterization by application of the colloidal titration technique. Wood Sci Technol 30(4):227–236CrossRefGoogle Scholar
  7. Chinga-Carrasco G (2013) Optical methods for the quantification of the fibrillation degree of bleached MFC materials. Micron 48:42–48CrossRefGoogle Scholar
  8. Chinga-Carrasco G, Averianova N, Gibadullin M, Petrov V, Leirset I, Syverud K (2013) Micro-structural characterisation of homogeneous and layered MFC nano-composites. Micron 44:331–338CrossRefGoogle Scholar
  9. Chun S-J, Lee S-Y, Doh G-H, Lee S, Kim JH (2011) Preparation of ultrastrength nanopapers using cellulose nanofibrils. J Ind Eng Chem 17:521–526CrossRefGoogle Scholar
  10. Dang Z, Zhang J, Ragauskas AJ (2007) Characterizing TEMPO-mediated oxidation of ECF bleached softwood kraft pulps. Carbohydr Polym 70:310–317CrossRefGoogle Scholar
  11. Dufresne A, Cavaillé J-Y, Vignon MR (1997) Mechanical behaviour of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64(6):1185–1194CrossRefGoogle Scholar
  12. Fang Z, Zhu H, Preston C, Han Z, Li Y, Lee S, Chai X, Chen G, Hu L (2013) Highly transparent and writable wood all-cellulose hybrid nanostructured paper. J Mater Chem C 1:6191–6197CrossRefGoogle Scholar
  13. González I, Boufi S, Pelach MA, Alcalà M, Vilaseca F, Mutjé P (2012) Nanofibrillated cellulose as paper additive in eucaliptus pulps. Bioresources 7(4):5167–5180Google Scholar
  14. González I, Alcalà M, Arbat G, Vilaseca F, Mutje P (2013a) Suitability of rapeseed chemithermomechanical pulp as raw material in papermaking. Bioresources 8(2):1697–1708Google Scholar
  15. González I, Vilaseca F, Alcalà M, Pèlach MA, Boufi S, Mutjé P (2013b) Effect of the combination of biobeating and NFC on the physico-mechanical properties of paper. Cellulose 20:1425–1435CrossRefGoogle Scholar
  16. Henriksson M, Berglund L, Isaksson P, Lindstrom T, Nishino T (2008) Cellulose nanopaper structures of high tughness. Biomacromolecules 9:1579–1585CrossRefGoogle Scholar
  17. Henriksson M, Fogelström L, Berglund LA, Johansson M, Hult A (2011) Novel nanocomposite concept based on cross-linking of hyperbranched polymers in reactive cellulose nanopaper templates. Compos Sci Technol 71:13–17CrossRefGoogle Scholar
  18. Isogai A, Saito T, Hayaka F (2011) TEMPO-oxidized cellulose nanofibres. Nanoscale 3:71–85CrossRefGoogle Scholar
  19. Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 9:2571–2576CrossRefGoogle Scholar
  20. Kulachenko A, Denoyelle T, Galland S, Lindström SB (2012) Elastic properties of cellulose nanopaper. Cellulose 19:793–807CrossRefGoogle Scholar
  21. Mutjé P, Pèlach MA, García JC, Presta S, Vilaseca F, Jiménez L (2006) Comparison of cationic demand between olive wood organosolv pulp and eucaliptus kraft pulp. Process Biochem 41:1602–1607CrossRefGoogle Scholar
  22. Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofibre paper. Adv Mater 21:1595–1598CrossRefGoogle Scholar
  23. Österberg M, Vartiainen J, Lucenius J, Hippi U, Seppala J, Serimaa R, Laine J (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. Appl Mater Interfaces 5:4640–4647CrossRefGoogle Scholar
  24. Saito S, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491CrossRefGoogle Scholar
  25. Saito T, Kurumae R, Wohlert J, Berglund LA, Isogai A (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14:248–253CrossRefGoogle Scholar
  26. Sehaqui H, Liu A, Zhou Q, Berglund L (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorgànic nanopaper structures. Biomacromolecules 11:2195–2198CrossRefGoogle Scholar
  27. Sehaqui H, Allais M, Zhou Q, Berglund L (2011) Wood cellulose biocomposites with fibrous structures at micro- and nano-scale. Compos Sci Technol 71:382–387CrossRefGoogle Scholar
  28. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRefGoogle Scholar
  29. Taipale T, Österberg M, Nykänen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspensions and paper strength. Cellulose 17:1005–1020CrossRefGoogle Scholar
  30. Varanasi S, Batchelor WJ (2013) Rapid preparation of cellulose nanofibre sheet. Cellulose 20:211–215CrossRefGoogle Scholar
  31. Yano H, Nakahara S (2004) Bio-composites produced from plant microfiber bundles with nanometer unit web-like network. J Mater Sci 39:1635–1638CrossRefGoogle Scholar
  32. Zimmerman T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • I. González
    • 1
    Email author
  • M. Alcalà
    • 2
  • G. Chinga-Carrasco
    • 3
  • F. Vilaseca
    • 1
  • S. Boufi
    • 4
  • P. Mutjé
    • 1
  1. 1.Group LEPAMAP, Department of Chemical EngineeringUniversity of GironaGeronaSpain
  2. 2.PRODIS Group, Department of Organization, Business Management and Product DesignUniversity of GironaGeronaSpain
  3. 3.Paper and Fibre Research Institute (PFI)TrondheimNorway
  4. 4.Laboratoire des Sciences des Matériaux et Environment, Faculté des Sciences de SfaxUniversité de SfaxSfaxTunisia

Personalised recommendations