, Volume 21, Issue 4, pp 2647–2663 | Cite as

A novel synergistic formulation between a cationic surfactant from lysine and hyaluronic acid as an antimicrobial coating for advanced cellulose materials

  • Matej Bračič
  • Lourdes Pérez
  • Rosa Infante Martinez-Pardo
  • Ksenija Kogej
  • Silvo Hribernik
  • Olivera Šauperl
  • Lidija Fras Zemljič
Original Paper


In this investigation, a novel coating for viscose fabric surface modification was developed using a synergistic formulation between a natural antimicrobial cationic surfactant from lysine (MKM) and a biopolymer hyaluronic acid (HA). The interaction between MKM and HA in aqueous solutions, as well as the interactions between their synergistic formulation (HA-MKM) and viscose fabric (CV) were studied using pH-potentiometric titrations’, turbidity measurements, the Kjeldahl method for the determination of nitrogen amounts, attenuated total reflectance fourier transform infrared spectroscopy, and scanning electron microscopy. The hydrophilic and antimicrobial properties of the functionalised CV were examined in order to evaluate its usages for medical applications. The results of the interaction studies showed that MKM and HA interact with each other by forming a precipitate when the binding sites of HA are saturated. The precipitate has a slightly positive charge at neutral pH due to excess binding of the MKM to HA. The excess positive charge was also detected on CV coated with HA-MKM. This was proven to be very beneficial for the antimicrobial properties of the functionalised CV. The antimicrobial tests showed exceptional antimicrobial activity of the functionalised CV against Escherichia Coli, Staphylococcus Aureus, Streptococcus Agalactiae, Candida Albicans, and Candida Glabrata, making the CV fabric highly interesting for potential use in medicine.


Viscose Hyaluronic acid Natural cationic surfactant pH-potentiometric titration Antimicrobial activity 



The financial support of Savatech d.o.o., Industrial rubber products and tyres is gratefully acknowledged. The authors also acknowledge the financial support from the Ministry of Education, Science and Sport of the Republic of Slovenia through the program P2 0118 as well as ARRS project L2-4060, and the financial support from the Spanish Plan National I+D+I MAT2012-38047-C02-02.


  1. Brown MB, Jones SA (2005) Hyaluronic acid: a unique topical vehicle for the localized delivery of drugs to the skin. J Eur Acad Dermatol Venereol 19:308–318. doi: 10.1111/j.1468-3083.2004.01180.x CrossRefGoogle Scholar
  2. Cakara D, Fras L, Bracic M, Kleinschek KS (2009) Protonation behavior of cotton fabric with irreversibly adsorbed chitosan: a potentiometric titration study. Carbohydr Polym 78:36–40. doi: 10.1016/j.carbpol.2009.04.011 CrossRefGoogle Scholar
  3. Czajka R (2005) Development of Medical Textile Market FIBRES & TEXTILES in Eastern Europe 13Google Scholar
  4. Dumitriu S (ed) (1998) Polysaccharides: structural diversity and functional versatility. Marcel Dekker, New YorkGoogle Scholar
  5. Fillat A, Gallardo O, Vidal T, Pastor FIJ, Díaz P, Roncero MB (2012) Enzymatic grafting of natural phenols to flax fibres: development of antimicrobial properties. Carbohydr Polym 87:146–152. doi: 10.1016/j.carbpol.2011.07.030
  6. Fras Zemljič L, Peršin Z, Stenius P (2009) Improvement of chitosan adsorption onto cellulosic fabrics by plasma treatment. Biomacromolecules 10:1181–1187. doi: 10.1021/bm801483s
  7. Fras Zemljič L, Strnad S, Šauperl O, Stana-Kleinschek K (2009) Characterization of amino groups for cotton fibers coated with chitosan Text Res J 79:219–226. doi: 10.1177/0040517508093592
  8. Fras L, Laine J, Stenius P, Stana-Kleinschek K, Ribitsch V, Doleček V (2004) Determination of dissociable groups in natural and regenerated cellulose fibers by different titration methods. J Appl Polym Sci 92:3186–3195. doi: 10.1002/app.20294 CrossRefGoogle Scholar
  9. Fras L, Ristić T, Tkavc T (2012) Adsorption and Antibacterial activity of soluble and precipitated chitosan on cellulose viscose fibers. J Eng Fibers Fabr 7:50–57 Google Scholar
  10. Gao Y, Cranston R (2008) Recent advances in antimicrobial treatments of textiles. Text Res J 78:60–72. doi: 10.1177/0040517507082332 CrossRefGoogle Scholar
  11. Genco T, Zemljič L, Bračič M, Stana-Kleinschek K, Heinze T (2012) Characterization of viscose fibers modified with 6-deoxy-6-amino cellulose sulfate. Cellulose:1–11. doi: 10.1007/s10570-012-9778-1
  12. Gran G (1952) Determination of the equivalence point in potentiometric titrations. Part II Analyst 77:661–671. doi: 10.1039/an9527700661 Google Scholar
  13. Holmberg K (2001) Natural surfactants. Curr Opin Colloid Interface Sci 6:148–159. doi: 10.1016/s1359-0294(01)00074-7 CrossRefGoogle Scholar
  14. Holmberg K, Jönsson B, Kronberg B, Lindman B (2003) Surfactants and polymers in aqueous solution. Wiley, West SussexGoogle Scholar
  15. Khdair A, Gerard B, Handa H, Mao G, Shekhar MPV, Panyam J (2008) Surfactant–polymer nanoparticles enhance the effectiveness of anticancer photodynamic therapy. Mol Pharm 5:795–807. doi: 10.1021/mp800026t CrossRefGoogle Scholar
  16. Lee KY, Jeong L, Kang YO, Lee SJ, Park WH (2009) Electrospinning of polysaccharides for regenerative medicine. Adv Drug Deliv Rev 61:1020–1032. doi: 10.1016/j.addr.2009.07.006 CrossRefGoogle Scholar
  17. Lu KW, Taeusch WH, Robertson B, Goerke J, Clements JA (2000) Polymer–surfactant treatment of meconium-induced acute lung injury. Am J Respir Crit Care Med 162:623–628CrossRefGoogle Scholar
  18. Malay Ö, Bayraktar O, BatIgün A (2007) Complex coacervation of silk fibroin and hyaluronic acid. Int J Biol Macromol 40:387–393. doi: 10.1016/j.ijbiomac.2006.09.017 CrossRefGoogle Scholar
  19. Merta J, Stenius P (1995) Interactions between cationic starch and anionic surfactants. Colloid Polym Sci 273:974–983. doi: 10.1007/bf00660376 CrossRefGoogle Scholar
  20. Panyam J, Chavanpatil MD (2011) Polymer-surfactant nanoparticles for sustained release of compounds. United States PatentGoogle Scholar
  21. Pérez L et al (2009) Cationic surfactants from lysine: synthesis, micellization and biological evaluation. Eur J Med Chem 44:1884–1892. doi: 10.1016/j.ejmech.2008.11.003 CrossRefGoogle Scholar
  22. Peršin Z, Stana-Kleinschek K, Sfiligoj-Smole M, Kre T, Ribitsch V (2004) Determining the surface free energy of cellulose materials with the powder contact angle method. Text Res J 74:55–62. doi: 10.1177/004051750407400110 CrossRefGoogle Scholar
  23. Pretsch E, Bühlmann P, Badertscher M (2009) Structure determination of organic compounds. Springer, BerlinGoogle Scholar
  24. Qian L, Guan Y, Ziaee Z, He B, Zheng A, Xiao H (2009) Rendering cellulose fibers antimicrobial using cationic β-cyclodextrin-based polymers included with antibiotics. Cellulose 16:309–317. doi: 10.1007/s10570-008-9270-0 CrossRefGoogle Scholar
  25. Rajendran R, Balakumar C, Sivakumar R, Amruta T, Devaki N (2011) Extraction and application of natural silk protein sericin from Bombyx mori as antimicrobial finish for cotton fabrics. J Text Inst 103:458–462. doi: 10.1080/00405000.2011.586151 CrossRefGoogle Scholar
  26. Ristić T, Zemljič LF, Novak M, Kunčič MK, Sonjak S, Cimerman NG, Strnad S (2011) Antimicrobial efficiency of functionalized cellulose fibres as potential medical textiles. In: Vilas AM (ed) Science against microbial pathogens: communicating current research and technological advances, Formatex research center, Badajoz Google Scholar
  27. Rojo E, Alonso MV, Domínguez JC, Saz-Orozco BD, Oliet M, Rodriguez F (2013) Alkali treatment of viscose cellulosic fibers from eucalyptus wood: structural, morphological, and thermal analysis. J Appl Polym Sci 130:2198–2204. doi: 10.1002/app.39399 CrossRefGoogle Scholar
  28. Rozenberg M, Shoham G (2007) FTIR spectra of solid poly-l-lysine in the stretching NH mode range. Biophys Chem 125:166–171. doi: 10.1016/j.bpc.2006.07.008
  29. Shateri Khalil-Abad M, Yazdanshenas M, Nateghi M (2009) Effect of cationization on adsorption of silver nanoparticles on cotton surfaces and its antibacterial activity. Cellulose 16:1147–1157. doi: 10.1007/s10570-009-9351-8
  30. Singhal JP, Ray AR (2002) Adsorption of iodine on nylon-6. Trends Biomater Artif Organs 16:46–51Google Scholar
  31. Thalberg K, Lindman B (1989) Interaction between hyaluronan and cationic surfactants. J Phys Chem 93:1478–1483. doi: 10.1021/j100341a058 CrossRefGoogle Scholar
  32. Tømmeraas K, Wahlund P-O (2009) Poly-acid properties of biosynthetic hyaluronan studied by titration. Carbohydr Polym 77:194–200. doi: 10.1016/j.carbpol.2008.12.021 CrossRefGoogle Scholar
  33. Wu Y (2012) Preparation of low-molecular-weight hyaluronic acid by ozone treatment. Carbohydr Polym 89:709–712. doi: 10.1016/j.carbpol.2012.03.081 CrossRefGoogle Scholar
  34. Yadav A, Prasad V, Kathe AA, Raj S, Yadav D, Sundaramoorthy C, Vigenshwaran N (2006) Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bull Mater Sci 29:641–645 Google Scholar
  35. Zarth CSP, Zemljič LF, Čakara D, Bračič M, Pfeifer A, Stana-Kleinschek K, Heinze T (2012) Charging behavior and stability of the novel amino group containing cellulose ester cellulose-4-[N-methylamino]butyrate hydrochloride. Macromol Chem Phys. doi: 10.1002/macp.201200057
  36. Zemljič LF, Šauperl O (2012) Chitosan and its derivatives as an adsorbate for cellulose fibres’ anti-microbial functionalizations. Industria textila 63:296–301Google Scholar
  37. Zemljic LF, Sauperl O, Kreze T, Strnad S (2013) Characterization of regenerated cellulose fibers antimicrobial functionalized by chitosan. Text Res J 83:185–196. doi: 10.1177/0040517512450759 CrossRefGoogle Scholar
  38. Zemljič L, Čakara D, Michaelis N, Heinze T, Stana Kleinschek K (2011) Protonation behavior of 6-deoxy-6-(2-aminoethyl)amino cellulose: a potentiometric titration study. Cellulose 18:33–43. doi: 10.1007/s10570-010-9467-x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Matej Bračič
    • 1
    • 2
  • Lourdes Pérez
    • 3
  • Rosa Infante Martinez-Pardo
    • 3
  • Ksenija Kogej
    • 4
  • Silvo Hribernik
    • 2
  • Olivera Šauperl
    • 2
  • Lidija Fras Zemljič
    • 2
  1. 1.Savatech d.o.o., Industrial Rubber Products and TyresKranjSlovenia
  2. 2.Institute for the Engineering and Design of MaterialsUniversity of MariborMariborSlovenia
  3. 3.Departamento de Tecnología de Tensioactivos, Instituto de Química Avanzada de CataluñaCSICBarcelonaSpain
  4. 4.Chair of Physical Chemistry, Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations