, Volume 21, Issue 4, pp 3055–3071 | Cite as

Development of cellulose nanowhisker-polyacrylamide copolymer as a highly functional precursor in the synthesis of nanometal particles for conductive textiles

  • A. Hebeish
  • S. Farag
  • S. Sharaf
  • Th. I. ShaheenEmail author
Original Paper


Herein we present extensive studies that were undertaken to develop a new copolymer with distinctive characteristics for utilization in different applications particularly in conductive textiles. The copolymer is based on graft polymerization of cellulose nanowhiskers (CNWs) with acrylamide and therefore nominated CNW-polyacrylamide (PAAm) copolymer. Development of this copolymer comprises preparation of CNWs from purified cotton sliver as per the acid hydrolysis method, followed by copolymerization of the freshly prepared CNWs with AAm at different feeding ratios for the sake of product optimization in the presence of K2S2O8 as initiator. Thus, obtained CNW-PAAm copolymers were characterized by making use of the proper instruments and analysis facilities. Following this, the newly prepared and promising copolymer was selected and used as a precursor in the green synthesis of silver and copper nanoparticles. The crystal nature of CNWs as cellulose I remains unaltered after copolymerization, but the crystallinity decreases. According to thermal gravimetric analysis, the copolymer is much more thermally stable than CNWs. The CNW-PAAm copolymer can be used successfully as a highly functional, effective and adequate precursor for green synthesis of silver and copper nanoparticles as shown by UV-Vis spectral analysis and transmission electron microscopy micrographs. A multi-branched shape and hyperbranched shape-like tree involving silver nanoparticles and the PAAm graft of the copolymer are formed. Furthermore, Cu nanoparticles are chosen as a candidate for conductive fabrics application.


Cellulose nanowhiskers Polyacrylamide Graft polymerization Silver nanoparticles Copper nanoparticles 

Supplementary material

10570_2014_317_MOESM1_ESM.doc (333 kb)
Supplementary material 1 (DOC 333 kb)


  1. Ahmad MB, Tay MY, Shameli K, Hussein MZ, Lim JJ (2011) Green synthesis and characterization of silver/chitosan/polyethylene glycol nanocomposites without any reducing agent. Int J Mol Sci 12(8). doi: 10.3390/ijms12084872
  2. Bitinis N, Verdejo R, Bras J, Fortunati E, Kenny JM, Torre L, López-Manchado MA (2013) Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites part I. Processing and morphology. Carbohydr Polym 96(2):611–620. doi: 10.1016/j.carbpol.2013.02.068 CrossRefGoogle Scholar
  3. Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94(1):154–169. doi: 10.1016/j.carbpol.2013.01.033 CrossRefGoogle Scholar
  4. Dang TMD, Le TTT, Fribourg-Blanc E, Dang MC (2011) Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Adv Nat Sci Nanosci Nanotechnol 2(1):015009CrossRefGoogle Scholar
  5. Drogat N, Granet R, Sol V, Memmi A, Saad N, Koerkamp CK, Bressollier P, Krausz P (2011) Antimicrobial silver nanoparticles generated on cellulose nanocrystals. J Nanopart Res 13(4):1557–1562. doi: 10.1007/s11051-010-9995-1 CrossRefGoogle Scholar
  6. El-Rafie MH, Shaheen TI, Mohamed AA, Hebeish A (2012) Bio-synthesis and applications of silver nanoparticles onto cotton fabrics. Carbohydr Polym 90(2):915–920. doi: 10.1016/j.carbpol.2012.06.020 CrossRefGoogle Scholar
  7. Filippo E, Serra A, Manno D (2009) Poly(vinyl alcohol) capped silver nanoparticles as localized surface plasmon resonance-based hydrogen peroxide sensor. Sens Actuators B Chem 138(2):625–630. doi: 10.1016/j.snb.2009.02.056 CrossRefGoogle Scholar
  8. Fortunati E, Armentano I, Zhou Q, Iannoni A, Saino E, Visai L, Berglund LA, Kenny JM (2012) Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 87(2):1596–1605. doi: 10.1016/j.carbpol.2011.09.066 CrossRefGoogle Scholar
  9. Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4(11):2238–2244. doi: 10.1039/b806789a
  10. Hebeish A, Farag S, Sharaf S, Shaheen TI (2014) Thermal responsive hydrogels based on semi interpenetrating network of poly(NIPAm) and cellulose nanowhiskers. Carbohydr Polym 102:159–166. doi: 10.1016/j.carbpol.2013.10.054 CrossRefGoogle Scholar
  11. Hossain KZ, Ahmed I, Parsons A, Scotchford C, Walker G, Thielemans W, Rudd C (2012) Physicochemical and mechanical properties of nanocomposites prepared using cellulose nanowhiskers and poly(lactic acid). J Mater Sci 47(6):2675–2686. doi: 10.1007/s10853-011-6093-4 CrossRefGoogle Scholar
  12. Hussain JI, Kumar S, Hashmi AA, Khan Z (2011) Silver nanoparticles: preparation, characterization, and kinetics. Adv Mat Lett 2(3):188–194CrossRefGoogle Scholar
  13. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466. doi: 10.1002/anie.201001273 CrossRefGoogle Scholar
  14. Liu H, Wang D, Shang S, Song Z (2011) Synthesis and characterization of Ag–Pd alloy nanoparticles/carboxylated cellulose nanocrystals nanocomposites. Carbohydr Polym 83(1):38–43. doi: 10.1016/j.carbpol.2010.07.019 CrossRefGoogle Scholar
  15. Liu QM, Zhou DB, Yamamoto Y, Ichino R, Okido M (2012) Preparation of Cu nanoparticles with NaBH4 by aqueous reduction method. Trans Nonferrous Metals Soc China 22(1):117–123. doi: 10.1016/S1003-6326(11)61149-7 CrossRefGoogle Scholar
  16. Ljungberg N, Bonini C, Bortolussi F, Boisson C, Heux L, Cavaille JY (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6(5):2732–2739Google Scholar
  17. Mochochoko T, Oluwafemi OS, Jumbam DN, Songca SP (2013) Green synthesis of silver nanoparticles using cellulose extracted from an aquatic weed; water hyacinth. Carbohydr Polym 98(1):290–294. doi: 10.1016/j.carbpol.2013.05.038 CrossRefGoogle Scholar
  18. Pham LQ, Sohn JH, Kim CW, Park JH, Kang HS, Lee BC, Kang YS (2012) Copper nanoparticles incorporated with conducting polymer: effects of copper concentration and surfactants on the stability and conductivity. J Colloid Interface Sci 365(1):103–109. doi: 10.1016/j.jcis.2011.09.041 CrossRefGoogle Scholar
  19. Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA (2012) Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett 71:114–116. doi: 10.1016/j.matlet.2011.12.055 CrossRefGoogle Scholar
  20. Raveendran P, Fu J, Wallen SL (2006) A simple and “green” method for the synthesis of Au, Ag, and Au–Ag alloy nanoparticles. Green Chem 8(1):34–38. doi: 10.1039/b512540e CrossRefGoogle Scholar
  21. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4(3):707–716. doi: 10.1016/j.actbio.2007.11.006 CrossRefGoogle Scholar
  22. Shin Y, Exarhos GJ (2007) Template synthesis of porous Titania using cellulose nanocrystals. Mater Lett 61(11–12):2594–2597. doi: 10.1016/j.matlet.2006.10.005 CrossRefGoogle Scholar
  23. Shin Y, Bae I-T, Arey BW, Exarhos GJ (2008) Facile stabilization of gold-silver alloy nanoparticles on cellulose nanocrystal. J Phys Chem C 112(13):4844–4848. doi: 10.1021/jp710767w CrossRefGoogle Scholar
  24. Tankhiwale R, Bajpai SK (2009) Graft copolymerization onto cellulose-based filter paper and its further development as silver nanoparticles loaded antibacterial food-packaging material. Colloids Surf B 69(2):164–168. doi: 10.1016/j.colsurfb.2008.11.004 CrossRefGoogle Scholar
  25. Xue C-H, Chen J, Yin W, Jia S-T, Ma J-Z (2012) Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Appl Surf Sci 258(7):2468–2472. doi: 10.1016/j.apsusc.2011.10.074 CrossRefGoogle Scholar
  26. Zhang Y, Peng H, Huang W, Zhou Y, Zhang X, Yan D (2008) Hyperbranched poly(amidoamine) as the stabilizer and reductant to prepare colloid silver nanoparticles in situ and their antibacterial activity. J Phys Chem C 112(7):2330–2336. doi: 10.1021/jp075436g CrossRefGoogle Scholar
  27. Zhou Y, Ding EY, Li WD (2007) Synthesis of TiO2 nanocubes induced by cellulose nanocrystal (CNC) at low temperature. Mater Lett 61(28):5050–5052. doi: 10.1016/j.matlet.2007.04.001 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • A. Hebeish
    • 1
  • S. Farag
    • 1
  • S. Sharaf
    • 1
  • Th. I. Shaheen
    • 1
    Email author
  1. 1.Textile Research Division, Cellulose Chemistry and Textile TechnologyNational Research CentreCairoEgypt

Personalised recommendations