, Volume 21, Issue 4, pp 3023–3030 | Cite as

Maintaining hand and improving fire resistance of cotton fabric through ultrasonication rinsing of multilayer nanocoating

  • Tyler Guin
  • Michelle Krecker
  • Aaron Milhorn
  • Jaime C. GrunlanEmail author
Original Paper


Thin films of environmentally benign polyelectrolytes, cationic chitosan (CH) and anionic poly(sodium phosphate) (PSP), were deposited on cotton fabric via layer-by-layer (LbL) assembly to reduce flammability. This CH–PSP nanocoating promotes charring of the cotton, rendering the fabric self-extinguishing. The coated fabric was rinsed in an ultrasonication bath between deposition steps to improve the softness (i.e., hand) of the coated fabric. Ultrasonication is believed to remove weakly adhered polyelectrolyte, preventing the fabric from becoming stiff, while improving anti-flammable behavior at a given coating weight. At 17 bilayers, only 9.1 wt% was added to the cotton, yet the coated cotton consistently passed vertical flame testing. Electron microscopy provides evidence of intumescence and confirms the cleaner deposition afforded by ultrasonication. The reduction in peak heat release rate and total heat release, as measured by micro cone calorimetry, were 73 and 81 % respectively, which is a new benchmark in LbL flame retardant coating on cotton. The mechanical properties of the fabric were measured using the Kawabata evaluation system, which showed that ultrasonication rinsing significantly improved the hand. The ability to render cotton fabric self-extinguishing, while maintaining a soft hand, marks a major milestone in the development of these environmentally-benign nanocoatings.


Layer-by-layer assembly Fabric hand Multilayer Flame retardant Cotton 



Occupational Safety and Health Administration


Flame retardant




Layer by layer




poly(sodium phosphate)


Quartz crystal microbalance


Vertical flame test


Scanning electron microscopy


Thermogravimetric analysis


Micro cone calorimetry


Total heat release


Heat release rate


Kawabata evaluation system



The authors acknowledge financial support from the Fire Research Division of the Engineering Laboratory (EL) at the National Institute of Standards and Technology (NIST). The FE-SEM acquisition was supported in part by the National Science Foundation under Grant No. DBI-0116835.

Supplementary material

Supplementary material 1 (MPG 19179 kb)


  1. Abdelkebir K, Gaudiere F, Morin-Grognet S, Coquerel G, Labat B, Atmani H, Ladam G (2011) Evidence of different growth regimes coexistin within biomimetic layer-by-layer films. Soft Matter 7:9197. doi: 10.1039/c1sm05800b CrossRefGoogle Scholar
  2. Alongi J, Carosio F, Malucelli G (2012) Layer by layer complex architectures based on ammonium polyphosphate, chitosan and silica on polyester-cotton blends: flammability and combustion behavior. Cellulose 19:1041–1050. doi: 10.1007/s10570-012-9682-8
  3. Apaydin K, Laachachi A, Ball V, Jimenez M, Bourbigot S, Toniazzo V, Ruch D (2013) Polyallylamine-montmorillonite as super flame retardant coating assemblies. Polym Degrad Stabil 98:627–634. doi: 10.1016/j.polymdegradstab.2012.11.006
  4. Beech S (1988) Textile terms and definitions, 8th edn. The Textile Institute, ManchesterGoogle Scholar
  5. Bertrand P, Jonas A, Laschewsky A, Legras R (2000) Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structures and properties. Macromol Rapid Commun 21:319–348. doi: 10.1002/(SICI)1521-3927(20000401)21:7<319:AID-MARC319>3.0.CO;2-7 CrossRefGoogle Scholar
  6. Carosio F, Alongi J, Malucelli G (2012) Layer by layer ammonium polyphosphate-based coatings for flame retardancy. Carbohydr Polym 88:1460–1469. doi: 10.1016/j.carbpol.2012.02.049
  7. Carosio F, Blasio D, Cuttica F, Alongi J, Frache A, Malucelli G (2013) Flame retardancy of polyester fabrics by spray-assisted layer-by-layer silica architectures. Ind Eng Chem Res 52:9544–9550. doi: 10.1021/ie4011244 CrossRefGoogle Scholar
  8. Decher G (2012) Layer-by-layer assembly (Putting molecules to work), 2nd ed. Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim. doi: 10.1002/9783527646746.ch1
  9. El-Sabbagh A, Taha I (2013) Characterization of the draping behavior of jute woven fabrics for applications of natural-fiber/epoxy composites. J Appl Polym Sci 130:1453–1465. doi: 10.1002/app.39261 CrossRefGoogle Scholar
  10. Horrocks AR (2011) Flame retardant challenges for textiles and fibres: new chemistry versus innovatory solutions. Polym Degrad Stab 96:377–392. doi: 10.1016/j.polymdegradstab.2010.03.036 CrossRefGoogle Scholar
  11. Kandola B (2010) Fire retardancy of polymeric materials. In: Morgan AB, Wilkie CA (ed) Fire retardancy of polymeric materials. Taylor and Francis Group CRC Press: Boca Raton, pp 725–762. doi: 10.1039/9781847559210
  12. Kandola B, Horrocks AR (1996) Complex char formation in flame-retarded fibre-intumescent combinations. Polym Degrad Stab 54:289–303. doi: 10.1016/S0141-3910(96)00054-7 CrossRefGoogle Scholar
  13. Kawabata S (1994) Objective hand measurement of nonwoven fabrics: part I: development of the equations. Text Res J 64:597. doi: 10.1177/004051759406401008 CrossRefGoogle Scholar
  14. Kawabata S, Niwa M, Yamashita Y (2002) Recent developments in the evaluation technology of fiber and textiles: Toward the engineered design of textile performance. J Appl Polym Sci 83:687–702. doi: 10.1002/app.2264 CrossRefGoogle Scholar
  15. Laufer G, Kirkland C, Morgan A, Grunlan J (2012) Intumescent multilayer nanocoating, made with renewable polyelectrolytes, for flame-retardant cotton. Biomacromolecules 13:2843–3848. doi: 10.1021/bm300873b CrossRefGoogle Scholar
  16. Laufer G, Kirkland C, Morgan AB, Grunlan J (2013) Exceptionally flame retardant sulfur-based multilayer nanocoating for polyurethane prepared from aqueous polyelectrolyte solutions. ACS Macro Lett 5:361–365. doi: 10.1021/mz400105e CrossRefGoogle Scholar
  17. Li YC, Grunlan J et al (2010) Flame retardant behavior of polyelectrolyte-clay thin film assemblies on cotton fabric. ACS Nano 4:3325. doi: 10.1021/nn100467e CrossRefGoogle Scholar
  18. Li YC, Grunlan J et al (2011) Intumescent all-polymer multilayer nanocoating capable of extinguishing flame on fabric. Adv Mater 23:3926–3931. doi: 10.1002/adma.201101871 CrossRefGoogle Scholar
  19. Mohamed A, Er-Rafik M, Moller M (2013) Supercritical carbon dioxide assisted silicon based finishing of cellulosic fabric: a novel approach. Carbohydr Polym 98:1095–1107. doi: 10.1016/j.carbpol.2013.06.027 CrossRefGoogle Scholar
  20. Morgan A (2012) An overview of flame retardancy of polymeric materials. Fire Mater. doi: 10.1002/fam.2128 Google Scholar
  21. Picart C, Lavalle P, Hubert P et al (2001) Buildup mechanism for poly(l-lysine)/hyaluronic acid films onto a solid surface. Langmuir 17:7414–7424. doi: 10.1021/la010848g CrossRefGoogle Scholar
  22. Priolo M, Gamboa D, Holder K, Grunlan J et al (2010) Super gas barrier of transparent polymer-clay multilayer ultrathin films. Nano Lett 10:4970–4974. doi: 10.1021/nl103047k CrossRefGoogle Scholar
  23. Shimomura H, Gemici Z, Cohen R, Rubner M (2010) Layer-by-layer-assembled high performance broadband antireflection coatings. ACS Appl Mater Interf 87:208–211. doi: 10.1021/am900883f Google Scholar
  24. Zhang T, Yan H, Wang L, Fang Z (2013) Controlled formation of self-extinguishing intumescent coating on ramie fabric via layer-by-layer assembly. Ind Eng Chem Res 52:6138–6146. doi: 10.1021/ie3031554 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Tyler Guin
    • 1
  • Michelle Krecker
    • 1
  • Aaron Milhorn
    • 1
  • Jaime C. Grunlan
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations