Cellulose

, Volume 21, Issue 4, pp 2315–2325 | Cite as

A study on the interaction of cationized chitosan with cellulose surfaces

  • Tijana Ristić
  • Tamilselvan Mohan
  • Rupert Kargl
  • Silvo Hribernik
  • Aleš Doliška
  • Karin Stana-Kleinschek
  • Lidija Fras
Original Paper

Abstract

This investigation describes the interaction of trimethyl chitosans (TMCs) with surfaces of cellulose thin films. The irreversible deposition/adsorption of TMCs with different degrees of cationization was studied with regards to the salt concentration and pH. As substrates, cellulose thin films were prepared by spin coating from trimethylsilyl cellulose and subsequent regeneration to pure cellulose. The pH-dependent zeta potential of cellulose thin films and the charge of TMCs were determined by streaming potential and potentiometric charge titration methods. A quartz crystal microbalance with dissipation monitoring was further used as a nanogram sensitive balance to detect the amount of deposited TMCs and the swelling of the bound layers. The morphology of the coatings was additionally characterized by atomic force microscopy and related to the adsorption results. A lower degree of cationization leads to higher amounts of deposited TMCs at all salt concentrations. Higher amounts of salt increase the deposition of TMCs. Protonation of primary amino groups results in the immobilization of less material at lower pH values. The results from this work can further be extended to the modification of regenerated cellulosic materials to obtain surfaces, with amino- and trimethylammonium moieties.

Keywords

Cellulose thin films QCM-D Cationized chitosan AFM Polymer adsorption 

Notes

Acknowledgments

The authors acknowledge the financial support from the Ministry of Education and Science and support of the Republic of Slovenia through program P2 0118. The publication was produced within the framework of the operation entitled “Centre of Open innovation and ResEarch UM (CORE@UM).” The operation is co-funded by the European Regional Development Fund and conducted within the framework of the Operational Programme for Strengthening Regional Development Potentials for the period 2007–2013, development priority 1: “Competitiveness of companies and research excellence,” priority axis 1.1: “Encouraging competitive potential of enterprises and research excellence.” Prof. Volker Ribitsch from the Institute of Chemistry, University of Graz, Austria, is highly acknowledged for the zeta potential measurements of cellulose films and the fruitful discussions. Mr. Matej Bračič from the Faculty of Mechanical Engineering, University of Maribor, Slovenia, is highly appreciated for carrying out potentiometric charge titrations of the TMC samples.

Supplementary material

10570_2014_267_MOESM1_ESM.docx (765 kb)
Supplementary material 1 (DOCX 764 kb)

References

  1. Barud HS, Regiani T, Marques RFC, Lustri WR, Messaddeq Y, Ribeiro SJL (2011) Antimicrobial bacterial cellulose-silver nanoparticles composite membranes. J. Nanomater 2011:10. doi:10.1155/2011/721631 CrossRefGoogle Scholar
  2. Bongiovanni R, Marchi S, Zeno E, Pollicino A, Thomas RR (2013) Water resistance improvement of filter paper by a UV-grafting modification with a fluoromonomer. Colloids Surf A 418:52–59CrossRefGoogle Scholar
  3. Breitwieser D, Spirk S, Fasl H, Ehmann HMA, Chemelli A, Reichel VE, Gspan C, Stana-Kleinschek K, Ribitsch V (2013) Design of simultaneous antimicrobial and anticoagulant surfaces based on nanoparticles and polysaccharides. J Mater Chem B 1(15):2022–2030CrossRefGoogle Scholar
  4. Buschle-Diller G, Inglesby MK, Wu Y (2005) Physicochemical properties of chemically and enzymatically modified cellulosic surfaces. Colloids Surf A 260(1–3):63–70CrossRefGoogle Scholar
  5. Čakara D, Fras L, Bračič M, Kleinschek KS (2009) Protonation behavior of cotton fabric with irreversibly adsorbed chitosan: a potentiometric titration study. Carbohydr Polym 78(1):36–40CrossRefGoogle Scholar
  6. Da Róz AL, Leite FL, Pereiro LV, Nascente PAP, Zucolotto V, Oliveira ON Jr, Carvalho AJF (2010) Adsorption of chitosan on spin-coated cellulose films. Carbohydr Polym 80(1):65–70CrossRefGoogle Scholar
  7. de Britto D, Celi Goy R, Campana Filho SP, Assis OBG (2011) Quaternary salts of chitosan: history, antimicrobial features, and prospects. Int J Carbohydr Chem. doi:10.1155/2011/312539 Google Scholar
  8. Duker E, Lindström T (2008) On the mechanisms behind the ability of CMC to enhance paper strength. Nord Pulp Pap Res J 23(1):54–64CrossRefGoogle Scholar
  9. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33CrossRefGoogle Scholar
  10. Eriksson M, Torgnysdotter A, Wågberg L (2006) Surface modification of wood fibers using the polyelectrolyte multilayer technique: effects on fiber joint and paper strength properties. Ind Eng Chem Res 45(15):5279–5286CrossRefGoogle Scholar
  11. Findenig G, Leimgruber S, Kargl R, Spirk S, Stana-Kleinschek K, Ribitsch V (2012) Creating water vapor barrier coatings from hydrophilic components. ACS Appl Mater Interfaces 4(6):3199–3206CrossRefGoogle Scholar
  12. Genco T, Zemljič L, Bračič M, Stana-Kleinschek K, Heinze T (2012) Characterization of viscose fibers modified with 6-deoxy-6-amino cellulose sulfate. Cellulose 19(6):2057–2067CrossRefGoogle Scholar
  13. Horvath AE, Lindström T, Laine J (2005) On the indirect polyelectrolyte titration of cellulosic fibers. conditions for charge stoichiometry and comparison with ESCA. Langmuir 22(2):824–830CrossRefGoogle Scholar
  14. Hubbe MA (2006) Sensing the electrokinetic potential of cellulosic fiber surfaces. BioResources 1(1):93–125Google Scholar
  15. Jin H, Lucia LA, Rojas OJ, Hubbe MA, Pawlak JJ (2012) Survey of soy protein flour as a novel dry strength agent for papermaking furnishes. J Agric Food Chem 60(39):9828–9833CrossRefGoogle Scholar
  16. Kargl R, Mohan T, Bračič M, Kulterer M, Doliška A, Stana-Kleinschek K, Ribitsch V (2012) Adsorption of carboxymethyl cellulose on polymer surfaces: evidence of a specific interaction with cellulose. Langmuir 28(31):11440–11447CrossRefGoogle Scholar
  17. Kargl R, Mohan T, Köstler S, Spirk S, Doliška A, Stana-Kleinschek K, Ribitsch V (2013) Functional patterning of biopolymer thin films using enzymes and lithographic methods. Adv Funct Mater 23(3):308–315CrossRefGoogle Scholar
  18. Khoshkava V, Kamal MR (2013) Effect of surface energy on dispersion and mechanical properties of polymer/nanocrystalline cellulose nanocomposites. Biomacromolecules 14(9):3155–3163CrossRefGoogle Scholar
  19. Köhnke T, Östlund Å, Brelid H (2011) Adsorption of arabinoxylan on cellulosic surfaces: influence of degree of substitution and substitution pattern on adsorption characteristics. Biomacromolecules 12(7):2633–2641CrossRefGoogle Scholar
  20. Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144(1):51–63CrossRefGoogle Scholar
  21. Kontturi E, Thüne PC, Niemantsverdriet JW (2003) Cellulose model surfacessimplified preparation by spin coating and characterization by X-ray photoelectron spectroscopy, infrared spectroscopy, and atomic force Microscopy. Langmuir 19(14):5735–5741CrossRefGoogle Scholar
  22. Kontturi KS, Tammelin T, Johansson L-S, Stenius P (2008) Adsorption of cationic starch on cellulose studied by QCM-D. Langmuir 24(9):4743–4749CrossRefGoogle Scholar
  23. Liu Z, Choi H, Gatenholm P, Esker AR (2011) Quartz crystal microbalance with dissipation monitoring and surface plasmon resonance studies of carboxymethyl cellulose adsorption onto regenerated cellulose surfaces. Langmuir 27(14):8718–8728CrossRefGoogle Scholar
  24. Lokhande HT, Salvi AS (1976) Electrokinetic studies of cellulosic fibres I. Zeta potential of fibres dyed with reactive dyes. Colloid Polym Sci 254(11):1030–1041CrossRefGoogle Scholar
  25. Marx KA (2003) Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution—surface interface. Biomacromolecules 4(5):1099–1120CrossRefGoogle Scholar
  26. Mohan T, Kargl R, Doliška A, Vesel A, Köstler S, Ribitsch V, Stana-Kleinschek K (2011) Wettability and surface composition of partly and fully regenerated cellulose thin films from trimethylsilyl cellulose. J Colloid Interface Sci 358(2):604–610CrossRefGoogle Scholar
  27. Mourya VK, Inamdar N (2009) Trimethyl chitosan and its applications in drug delivery. J Mater Sci Mater Med 20(5):1057–1079CrossRefGoogle Scholar
  28. Nyström D, Lindqvist J, Östmark E, Antoni P, Carlmark A, Hult A, Malmström E (2009) Superhydrophobic and self-cleaning bio-fiber surfaces via atrp and subsequent postfunctionalization. ACS Appl Mater Interfaces 1(4):816–823CrossRefGoogle Scholar
  29. Orelma H, Filpponen I, Johansson L-S, Laine J, Rojas OJ (2011) Modification of cellulose films by adsorption of CMC and chitosan for controlled attachment of biomolecules. Biomacromolecules 12(12):4311–4318CrossRefGoogle Scholar
  30. Orelma H, Teerinen T, Johansson L-S, Holappa S, Laine J (2012) CMC-modified cellulose biointerface for antibody conjugation. Biomacromolecules 13(4):1051–1058CrossRefGoogle Scholar
  31. Petersen H, Radosta S, Vorwerg W, Kießler B (2013) Cationic starch adsorption onto cellulosic pulp in the presence of other cationic synthetic additives. Colloid Surf A 433:1–8CrossRefGoogle Scholar
  32. Reischl M, Kostler S, Kellner G, Stana-Kleinschek K, Ribitsch V (2008) Oscillating streaming potential measurement system for macroscopic surfaces. Rev Sci Instrum 79(11):113902–113906CrossRefGoogle Scholar
  33. Rodahl M, Höök F, Krozer A, Brzezinski P, Kasemo B (1995) Quartz crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments. Rev Sci Instrum 66(7):3924–3930CrossRefGoogle Scholar
  34. Rodriguez F, Sepulveda HM, Bruna J, Guarda A, Galotto MJ (2013) Development of cellulose eco-nanocomposites with antimicrobial properties oriented for food packaging. Packag Technol Sci 26(3):149–160CrossRefGoogle Scholar
  35. Sahni JK, Chopra S, Ahmad FJ, Khar RK (2008) Potential prospects of chitosan derivative trimethyl chitosan chloride (TMC) as a polymeric absorption enhancer: synthesis, characterization and applications. J. Pharm Pharmacol 60(9):1111–1119CrossRefGoogle Scholar
  36. Song J, Rojas OJ (2013) Approaching super-hydrophobicity from cellulosic materials: a Review (2013). Nord Pulp Pap Res J 26(2):216–238CrossRefGoogle Scholar
  37. Stana-Kleinschek K, Kreze T, Ribitsch V, Strnad S (2001) Reactivity and electrokinetical properties of different types of regenerated cellulose fibres. Colloid Surf A 195(1–3):275–284CrossRefGoogle Scholar
  38. Tan H, Ma R, Lin C, Liu Z, Tang T (2013) Quaternized chitosan as an antimicrobial agent: antimicrobial activity, mechanism of action and biomedical applications in orthopedics. Int J Mol Sci 14(1):1854–1869CrossRefGoogle Scholar
  39. Ulbrich M, Radosta S, Kießler B, Vorwerg W (2012) Interaction of cationic starch derivatives and cellulose fibres in the wet end and its correlation to paper strength with a statistical evaluation. Starch Stärke 64(12):972–983Google Scholar
  40. Vasiljević J, Gorjanc M, Tomšič B, Orel B, Jerman I, Mozetič M, Vesel A, Simončič B (2013) The surface modification of cellulose fibres to create super-hydrophobic, oleophobic and self-cleaning properties. Cellulose 20(1):277–289CrossRefGoogle Scholar
  41. Werner C, König U, Augsburg A, Arnhold C, Körber H, Zimmermann R, Jacobasch HJ (1999) Electrokinetic surface characterization of biomedical polymers—a survey. Colloids Surf A 159(2–3):519–529CrossRefGoogle Scholar
  42. Yoon S-Y, Deng Y (2007) Experimental and modeling study of the strength properties of clay—starch composite filled papers. Ind Eng Chem Res 46(14):4883–4890CrossRefGoogle Scholar
  43. Zemljič L, Čakara D, Michaelis N, Heinze T, Stana Kleinschek K (2011) Protonation behavior of 6-deoxy-6-(2-aminoethyl)amino cellulose: a potentiometric titration study. Cellulose 18(1):33–43CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Tijana Ristić
    • 1
    • 3
  • Tamilselvan Mohan
    • 2
  • Rupert Kargl
    • 1
  • Silvo Hribernik
    • 1
  • Aleš Doliška
    • 1
  • Karin Stana-Kleinschek
    • 1
  • Lidija Fras
    • 1
  1. 1.Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical EngineeringUniversity of MariborMariborSlovenia
  2. 2.Institute of ChemistryUniversity GrazGrazAustria
  3. 3.Tosama, Production of Medical SuppliesDomžaleSlovenia

Personalised recommendations