Advertisement

Cellulose

, Volume 21, Issue 4, pp 2247–2259 | Cite as

Proton mobility and copper coordination in polysaccharide- and gelatin-based bioblends and polyblends

  • R. I. Mattos
  • C. E. Tambelli
  • E. Raphael
  • I. D. A. Silva
  • C. J. Magon
  • J. P. Donoso
  • A. PawlickaEmail author
Original Paper

Abstract

Polysaccharide- and gelatin-based bioblends and polyblends were synthesized and characterized by complex impedance spectroscopy, proton nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR). Higher ionic conductivities of 7.9 × 10−5 S/cm at room temperature and 2.5 × 10−3 S/cm at 80 °C were obtained for the agar-chitosan polyblends. For all samples, the activation energies, calculated from the Arrhenius plot of ionic conductivity and from the onset of NMR line narrowing, are in the range 0.30–0.86 and 0.38–0.57 eV, respectively. The glass transition temperatures (T g NMR ) varied from 200 to 215 K, depending on the sample composition. The temperature dependence of the 1H spin–lattice relaxation revealed two distinct proton dynamics. The EPR spectra are characteristic of Cu2 ions in tetragonally distorted octahedral sites. Quantitative analysis of the EPR spin Hamiltonian g || and A || parameters revealed copper ions complexed by nitrogens and oxygens in the samples containing chitosan or gelatin and only by oxygens in agar-based ones. The in-plane π bonding is less covalent for the gelatin and chitosan blends. Results suggest that natural bioblends and polyblends are interesting systems to be used in materials science engineering.

Keywords

Natural macromolecules Bioblends Impedance Solid state NMR EPR 

Notes

Acknowledgments

The financial support of the Brazilian agencies Capes, CNPq and FAPESP are gratefully acknowledged. Research was partially financed by the CeRTEV, Center for Research, Technology and Education in Vitreous Materials, FAPESP 2013/07793-6.

References

  1. Bohmer R, Jeffrey KR, Vogel M (2007) Solid-state LiNMR with applications to the translational dynamics in ion conductors. Prog Nucl Magn Reson Spectrosc 50(2–3):87–174. doi: 10.1016/j.pnmrs.2006.12.001 CrossRefGoogle Scholar
  2. Boobalan S, Rao PS (2010) Structural elucidation of Cu(II) ion doped in hexaaquozincdiaquobis(malonato)zincate host by EPR spectroscopy. J Phys Chem Solids 71(11):1527–1533. doi: 10.1016/j.jpcs.2010.07.019 CrossRefGoogle Scholar
  3. Carl PJ, Larsen SC (2000) EPR study of copper-exchanged zeolites: effects of correlated g- and A-strain, Si/Al ratio, and parent zeolite. J Phys Chem B 104(28):6568–6575. doi: 10.1021/Jp000015j CrossRefGoogle Scholar
  4. Chanda M, Roy SK (2006) Plastics technology handbook. In, CRC Press, pp 896Google Scholar
  5. Cheng MY, Deng JU, Yang F, Gong YD, Zhao NM, Zhang XF (2003) Study on physical properties and nerve cell affinity of composite films from chitosan and gelatin solutions. Biomaterials 24(17):2871–2880. doi: 10.1016/S0142-9612(03)00117-0 CrossRefGoogle Scholar
  6. Chung SH, Heitjans P, Winter R, Bzaucha W, Florjanczyk Z, Onoda Y (1998) Enhancement of ionic conductivity by the addition of plasticizers in cationic monoconducting polymer electrolytes. Solid State Ionics 112(1–2):153–159. doi: 10.1016/s0167-2738(98)00229-x Google Scholar
  7. Ciardelli G, Chiono V (2006) Materials for peripheral nerve regeneration. Macromol Biosci 6(1):13–26. doi: 10.1002/mabi.200500151 CrossRefGoogle Scholar
  8. Cremona M, Legnani C, Vilani C, Calil VL, Barud HS, Quirino WG, Achete CA, Ribeiro SJL (2008) Bacterial cellulose membrane as flexible substrate for organic light emitting devices. Thin Solid Films 517(3):1016–1020. doi: 10.1016/j.tsf.2008.06.011 CrossRefGoogle Scholar
  9. Donoso JP, Cavalcante MG, Bonagamba TJ, Nascimento OR, Panepucci H (1995) Magnetic-resonance study of water-absorption in some peg-lithium salt polymer electrolytes. Electrochim Acta 40(13–14):2357–2360. doi: 10.1016/0013-4686(95)00193-I CrossRefGoogle Scholar
  10. Donoso JP, Lopes LVS, Pawlicka A, Fuentes S, Retuert PJ, Gonzalez G (2007) Nuclear magnetic resonance study of PEO-chitosan based polymer electrolytes. Electrochim Acta 53(4):1455–1460. doi: 10.1016/j.electacta.2007.04.101 CrossRefGoogle Scholar
  11. Eckert H (1992) Structural characterization of noncrystalline solids and glasses using Solid-state Nmr. Prog Nucl Magn Reson Spectrosc 24(3):159–293. doi: 10.1016/0079-6565(92)80001-V CrossRefGoogle Scholar
  12. El-Hefian EMA, Nasef MM, Yahaya AH, Khan RA (2010) Preparation and characterization of chitosan/agar blends: rheological and thermal studies. J Chil Chem Soc 55(1):130–136CrossRefGoogle Scholar
  13. Ganesan R, Viswanathan B (2004) Physicochemical and catalytic properties of copper ethylenediamine complex encapsulated in various zeolites. J Phys Chem B 108(22):7102–7114. doi: 10.1021/Jp037765o CrossRefGoogle Scholar
  14. Giua M, Panero S, Scrosati B, Cao X, Greenbaum SG (1996) Investigation of mixed cation effects in PEO(9)Zn(1-x)Cu(x)(CF3SO3)(2) polymer electrolytes. Solid State Ionics 83(1–2):73–78. doi: 10.1016/0167-2738(95)00216-2 CrossRefGoogle Scholar
  15. Gomez-Estaca J, Gomez-Guillen MC, Fernandez-Martin F, Montero P (2011) Effects of gelatin origin, bovine-hide and tuna-skin, on the properties of compound gelatin-chitosan films. Food Hydrocoll 25(6):1461–1469. doi: 10.1016/j.foodhyd.2011.01.007 CrossRefGoogle Scholar
  16. Guo T, Zhao JN, Chang JB, Ding Z, Hong H, Chen JN, Zhang JF (2006) Porous chitosan–gelatin scaffold containing plasmid DNA encoding transforming growth factor-beta 1 for chondrocytes proliferation. Biomaterials 27(7):1095–1103. doi: 10.1016/j.biomaterials.2005.08.015 CrossRefGoogle Scholar
  17. Hathaway BJ, Billing DE (1970) Electronic properties and stereochemistry of mono-nuclear complexes of copper(Ii) ion. Coord Chem Rev 5(2):143. doi: 10.1016/S0010-8545(00)80135-6 CrossRefGoogle Scholar
  18. Hong H, Liu CS, Wu WJ (2009) Preparation and characterization of chitosan/PEG/gelatin composites for tissue engineering. J Appl Polym Sci 114(2):1220–1225. doi: 10.1002/App.30619 CrossRefGoogle Scholar
  19. Huang Y, Onyeri S, Siewe M, Moshfeghian A, Madihally SV (2005) In vitro characterization of chitosan–gelatin scaffolds for tissue engineering. Biomaterials 26(36):7616–7627. doi: 10.1016/j.biomaterials.2005.05.036 CrossRefGoogle Scholar
  20. Justi KC, Laranjeira MCM, Neves A, Mangrich AS, Favere VT (2004) Chitosan functionalized with 2[-bis-(pyridylmethyl) aminomethyl]4-methyl-6-formyl-phenol: equilibrium and kinetics of copper(II) adsorption. Polymer 45(18):6285–6290. doi: 10.1016/j.polymer.2004.07.009 CrossRefGoogle Scholar
  21. Kadir MFZA, Teo LP, Majid SR, Arof AK (2009) Conductivity studies on plasticised PEO/chitosan proton conducting polymer electrolyte. Mater Res Innov 13(3):259–262. doi: 10.1179/143307509x440460 CrossRefGoogle Scholar
  22. Kadir MFZ, Majid SR, Arof AK (2010) Plasticized chitosan-PVA blend polymer electrolyte based proton battery. Electrochim Acta 55(4):1475–1482. doi: 10.1016/j.electacta.2009.05.011 CrossRefGoogle Scholar
  23. Kivelson D, Neiman R (1961) ESR studies on bonding in copper complexes. J Chem Phys 35(1):149–155. doi: 10.1063/1.1731880 CrossRefGoogle Scholar
  24. Kramareva NV, Finashina ED, Kucherov AV, Kustov LM (2003) Copper complexes stabilized by chitosans: peculiarities of the structure, redox, and catalytic properties. Kinet Catal 44(6):793–800CrossRefGoogle Scholar
  25. Kreuer KD (1997) Fast proton conductivity: a phenomenon between the solid and the liquid state? Solid State Ionics 94(1–4):55–62CrossRefGoogle Scholar
  26. Lopes LVS, Dragunski DC, Pawlicka A, Donoso JP (2003) Nuclear magnetic resonance and conductivity study of starch based polymer electrolytes. Electrochim Acta 48(14–16):2021–2027. doi: 10.1016/S0013-4686(03)00181-6 CrossRefGoogle Scholar
  27. Mattos RI, Pawlicka A, Lima JF, Tambelli CE, Magon CJ, Donoso JP (2010) Magnetic resonance and conductivity study of gelatin-based proton conductor polymer electrolytes. Electrochim Acta 55(4):1396–1400. doi: 10.1016/j.electacta.2009.04.038 CrossRefGoogle Scholar
  28. Ng STC, Forsyth M, MacFarlane DR, Garcia M, Smith ME, Strange JH (1998) Composition effects in polyetherurethane-based solid polymer electrolytes. Polymer 39(25):6261–6268. doi: 10.1016/S0032-3861(98)00153-0 CrossRefGoogle Scholar
  29. Ogihara W, Sun JZ, Forsyth M, MacFarlane DR, Yoshizawa M, Ohno H (2004) Ionic conductivity of polymer gels deriving from alkali metal ionic liquids and negatively charged polyelectrolytes. Electrochim Acta 49(11):1797–1801. doi: 10.1016/j.electacta.2003.12.011 CrossRefGoogle Scholar
  30. Pawlicka A, Danczuk M, Wieczorek W, Zygadlo-Monikowska E (2008) Influence of plasticizer type on the properties of polymer electrolytes based on chitosan. J Phys Chem A 112(38):8888–8895. doi: 10.1021/jp801573h CrossRefGoogle Scholar
  31. Pawlicka A, Mattos RI, Lima JF, Tambelli CE, Magon CJ, Donoso JP (2011) Magnetic resonance and conductivity study of a gelatin-based polymer gel electrolyte. Electrochim Acta 57:187–191. doi: 10.1016/j.electacta.2011.07.062 CrossRefGoogle Scholar
  32. Pawlicka A, Mattos RI, Tambelli CE, Silva IDA, Magon CJ, Donoso JP (2013) Magnetic resonance study of chitosan bio-membranes with proton conductivity properties. J Memb Sci 429:190–196. doi: 10.1016/j.memsci.2012.11.048 CrossRefGoogle Scholar
  33. Peisach J, Blumberg WE (1974) Structural implications derived from analysis of electron-paramagnetic resonance-spectra of natural and artificial copper proteins. Arch Biochem Biophys 165(2):691–708. doi: 10.1016/0003-9861(74)90298-7 CrossRefGoogle Scholar
  34. Pilbrow JR (1990) Transition Ion Electron Paramagnetic Resonance. Oxford University Press, OxfordGoogle Scholar
  35. Procter IM, Hathaway BJ, Nicholls P (1968) The electronic properties and stereochemistry of copper(2) Ion. I. Bis(Ethylenediamine)copper(2) complexes. J Chem Soc A 7:1678–1684. doi: 10.1039/J19680001678 CrossRefGoogle Scholar
  36. Raphael E, Avellaneda CO, Manzolli B, Pawlicka A (2010) Agar-based films for application as polymer electrolytes. Electrochim Acta 55(4):1455–1459. doi: 10.1016/j.electacta.2009.06.010 CrossRefGoogle Scholar
  37. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632. doi: 10.1016/j.progpolymsci.2006.06.001 CrossRefGoogle Scholar
  38. Shukur MF, Ithnin R, Illias HA, Kadir MFZ (2013) Proton conducting polymer electrolyte based on plasticized chitosan-PEO blend and application in electrochemical devices. Opt Mater 35(10):1834–1841. doi: 10.1016/j.optmat.2013.03.004 CrossRefGoogle Scholar
  39. Singh BK, Bhojak N, Mishra P, Garg BS (2008) Copper(II) complexes with bioactive carboxyamide: synthesis, characterization and biological activity. Spectrochim Acta A 70(4):758–765. doi: 10.1016/j.saa.2007.09.008 CrossRefGoogle Scholar
  40. Stoll S, Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178(1):42–55. doi: 10.1016/j.jmr.2005.08.013 CrossRefGoogle Scholar
  41. Stosser R, Sebastian S, Scholz G, Willer M, Jeschke G, Schweiger A, Nofz M (1999) Pulse EPR spectroscopy of Cu2+-doped inorganic glasses. Appl Magn Reson 16(4):507–528CrossRefGoogle Scholar
  42. Vedeanu N, Magdas DA, Stefan R (2012) Structural modifications induced by addition of copper oxide to lead-phosphate glasses. J Non Cryst Solids 358(23):3170–3174. doi: 10.1016/j.jnoncrysol.2012.08.003 CrossRefGoogle Scholar
  43. Vieira DF, Avellaneda CO, Pawlicka A (2007) Conductivity study of a gelatin-based polymer electrolyte. Electrochim Acta 53(4):1404–1408CrossRefGoogle Scholar
  44. Walderhaug H, Soderman O, Topgaard D (2010) Self-diffusion in polymer systems studied by magnetic field-gradient spin-echo NMR methods. Prog Nucl Magn Reson Spectrosc 56(4):406–425. doi: 10.1016/j.pnmrs.2010.04.002 CrossRefGoogle Scholar
  45. Wilkening M, Bork D, Indris S, Heitjans P (2002) Diffusion in amorphous LiNbO3 studied by Li-7 NMR comparison with the nano- and microcrystalline material. Phys Chem Chem Phys 4(14):3246–3251. doi: 10.1039/B201193j CrossRefGoogle Scholar
  46. Winter R, Siegmund K, Heitjans P (1997) Nuclear magnetic and conductivity relaxations by Li diffusion in glassy and crystalline LiAlSi4O10. J Non Cryst Solids 212(2–3):215–224. doi: 10.1016/S0022-3093(96)00654-0 CrossRefGoogle Scholar
  47. Wright PV (1975) Electrical conductivity in complexes of poly(ethylene oxide). British Polym J 7:319–327CrossRefGoogle Scholar
  48. Yalpani M (1988) Polysaccharides, synthesis, modifications and structure/property relations. Elsevier, AmsterdamGoogle Scholar
  49. Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31(6):576–602. doi: 10.1016/j.progpolymsci.2006.03.002 CrossRefGoogle Scholar
  50. Yu B, Zhou F, Wang CW, Liu WM (2007) A novel gel polymer electrolyte based on poly ionic liquid 1-ethyl 3-(2-methacryloyloxy ethyl) imidazolium iodide. Eur Polym J 43(6):2699–2707. doi: 10.1016/j.eurpolymj.2007.03.027 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • R. I. Mattos
    • 1
    • 2
  • C. E. Tambelli
    • 1
  • E. Raphael
    • 2
    • 3
  • I. D. A. Silva
    • 4
  • C. J. Magon
    • 4
  • J. P. Donoso
    • 4
  • A. Pawlicka
    • 2
    Email author
  1. 1.FZEAUniversidade de São PauloPirassunungaBrazil
  2. 2.IQSCUniversidade de São PauloSão CarlosBrazil
  3. 3.DCNATUniversidade Federal de São João Del ReiSão João Del ReiBrazil
  4. 4.IFSCUniversidade de São PauloSão CarlosBrazil

Personalised recommendations