Advertisement

Cellulose

, Volume 21, Issue 3, pp 1489–1503 | Cite as

The effect of Fenton chemistry on the properties of microfibrillated cellulose

  • Pia HellströmEmail author
  • Anette Heijnesson-Hultén
  • Magnus Paulsson
  • Helena Håkansson
  • Ulf Germgård
Original Paper

Abstract

A fully bleached birch kraft pulp was treated with acidic hydrogen peroxide in the presence of ferrous ions (Fenton’s reagent) and thereafter treated mechanically in a colloid mill to produce a product containing microfibrillated cellulose (MFC). The produced MFC products were chemically and morphologically characterized and compared with MFC products produced without pretreatment as well as with enzymatic hydrolysis. Fenton treatment resulted in an increase in total charge and number of carbonyl groups while the intrinsic viscosity decreased. The Fenton treated pulps were easier to process mechanically i.e. they reached a higher specific surface area at a given mechanical treatment time and the MFC produced had a stable water-fibre suspension for at least 8 weeks compared to enzymatic pretreated pulps and pulps not subjected to any pretreatment.

Keywords

Microfibrillated cellulose Fenton chemistry Enzymatic hydrolysis Carbonyl groups Carbohydrate composition Total and surface charge Suspension stability 

Notes

Acknowledgments

This study was performed as a part of the multidisciplinary Industrial Graduate School VIPP—Values Created in Fibre Based Processes and Products—at Karlstad University, with the financial support from the Knowledge Foundation, Sweden. Christer Burman of Karlstad University is gratefully acknowledged for his help with the scanning electron microscopy study.

References

  1. Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979CrossRefGoogle Scholar
  2. Andresen M, Johansson L-S, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13(6):665–677CrossRefGoogle Scholar
  3. Barb WG, Baxendale JH, George P, Hargrave HG (1951) Reactions of ferrous and ferric ions with hydrogen peroxide. J Chem Soc Faraday T 47:462–500CrossRefGoogle Scholar
  4. Bhandari PN, Jones DD, Hanna MA (2012) Carboxymethylation of cellulose using reactive extrusion. Carbohydr Polym 87(3):2246–2254CrossRefGoogle Scholar
  5. Bhardwaj NK, Duong TD, Nguyen KL (2004) Pulp charge determination by different methods: effect of beating/refining. Colloid Surf A 236(1–3):39–44CrossRefGoogle Scholar
  6. Brännvall E, Annergren G (2004) Pulp characterisation. In: Ek M, Henriksson G (eds) Pulp and paper chemistry and technology, vol 2. De Gruyter, Berlin, pp 430–459Google Scholar
  7. Chinga-Carrasco G (2011) Cellulose fibres, nanofibril and microfibrils: the morphological sequence of MFC components from a plant physiology and fibre technology point of view. Nanoscale Res Lett 6(417):1–7Google Scholar
  8. Eriksen Ø, Syverud K, Gregersen Ø (2008) The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nord Pulp Pap Res J 23(3):299–303CrossRefGoogle Scholar
  9. Fenton HJH (1894) Oxidation of tartaric acid in presence of iron. J Chem Soc Faraday T 65:899–910Google Scholar
  10. Ghose TK (1987) Measurement of cellulase ativities. Pure Appl Chem 59(2):257–268CrossRefGoogle Scholar
  11. Gierer J (1997) Formation and involvement of superoxide (O2·/HO2·) and hydroxyl (OH·) radicals in TCF bleaching processes: a review. Holzforschung 51(1):34–46CrossRefGoogle Scholar
  12. Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc 147:332–351CrossRefGoogle Scholar
  13. Henniges U, Okubayashi S, Rosenau T, Potthast A (2012) Irradiation of cellulosic pulps: understanding its impact on cellulose oxidation. Biomacromolecules 13(12):4171–4178Google Scholar
  14. Henriksson G, Christiernin M, Agnemo R (2005) Monocomponent endoglucanase treatment increases the reactivity of softwood sulphite dissolving pulp. J Ind Microbiol Biotechnol 32(5):211–214CrossRefGoogle Scholar
  15. Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43(8):3434–3441CrossRefGoogle Scholar
  16. Horvath AE, Lindström T, Laine J (2005) On the indirect polyelectrolyte titration of cellulosic fibers. Conditions for charge stoichiometry and comparison with ESCA. Langmuir 22(2):824–830CrossRefGoogle Scholar
  17. Hubbe M, Orlando J (2008) Colloidal stability and aggregation of lignocellulosic materials in aqueous suspension: a review. Bioresources 3(4):1419–1491Google Scholar
  18. Isogai A (2009) Individualization of nano-sized plant cellulose fibrils achieved by direct surface carboxylation using TEMPO catalyst. paper presented at the international conference of nanotechnology for the forest products industry, Edmonton, Canada, 23–26 JuneGoogle Scholar
  19. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85CrossRefGoogle Scholar
  20. Iwamoto S, Kai W, Isogai T, Saito T, Isogai A, Iwata T (2010) Comparison study of TEMPO-analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils. Polym Degrad Stab 95(8):1394–1398CrossRefGoogle Scholar
  21. Jain P, Vigneshwaran N (2012) Effect of Fenton’s pretreatment on cotton cellulosic substrates to enhance its enzymatic hydrolysis response. Bioresource Technol 103(1):219–226CrossRefGoogle Scholar
  22. Jeong M-J, Dupont A-L, de la Rie ER (2014) Degradation of cellulose at the wet–dry interface. II. Study of oxidation reactions and effect of antioxidants. Carbohydr Polym 101:671–683CrossRefGoogle Scholar
  23. Katz S, Beatson R, Scallan A (1984) The determination of strong and weak acidic groups in sulfite pulps. Svensk Papperstidning 6(87):48–53Google Scholar
  24. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: faszinierendes biopolymer und nachhaltiger Rohstoff. Angew Chem Ger Edit 117(22):3422–3458CrossRefGoogle Scholar
  25. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Edit 50(24):5438–5466CrossRefGoogle Scholar
  26. Lai Y-Z (2001) Chemical degradation. In: Hon DN-S, Shiraishi N (eds) Wood and cellulsic chemistry, 2nd edn. Marcel Dekker, Inc., New York, Basel, pp 443–512Google Scholar
  27. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—Its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90(2):735–764CrossRefGoogle Scholar
  28. Marton R, Robie J (1969) Characterization of mechanical pulps by settling technique. Tappi J 52(12):2400–2406Google Scholar
  29. Marx-Figini M (1978) Significance of the intrinsic viscosity ratio of unsubstituted and nitrated cellulose in different solvents. Angew Macromol Chem 72(1):161–171CrossRefGoogle Scholar
  30. Mishra S, Thirree J, Manent A-S, Chabot B, Daneault C (2011) Ultrasound-catalyzed TEMPO-mediated oxidation of native cellulose for the production of nanocellulose: effect of process variables. Bioresources 6(1):121–143Google Scholar
  31. Mishra SP, Manent A-S, Chabot B, Daneault C (2012) The use of sodium chlorite in post-oxidation of tempo-oxidized pulp: effect on pulp characteristics and nanocellulose yield. J Wood Chem Technol 32(2):137–148CrossRefGoogle Scholar
  32. Norimoto M (2001) Chemical modification of wood. In: Hon DN-S, Shiraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker Inc, New York, pp 573–598Google Scholar
  33. Oliva JM, Manzanares P, Ballesteros I, Negro MJ, González A, Ballesteros M (2005) Application of Fentonś reaction to steam explosion prehydrolysates from poplar biomass. Appl Biochem Biotechnol 124(1–3):887–899CrossRefGoogle Scholar
  34. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941CrossRefGoogle Scholar
  35. Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36(1):1–84CrossRefGoogle Scholar
  36. Potthast A, Rosenau T, Kosma P, Saariaho A-M, Vuorinen T (2005) On the nature of carbonyl groups in cellulosic pulps. Cellulose 12(1):43–50CrossRefGoogle Scholar
  37. Roncero B, Colomb JF, Vidal T (2002) Application of post-treatments to the ozone bleaching of eucalypt pulp to increase the selectivity. Appita J 55(4):305–309Google Scholar
  38. Roncero MB, Queral MA, Colom JF, Vidal T (2003) Why acid pH Increases the selectivity of the ozone bleaching processes. Ozone Sci Eng 25(6):523–534CrossRefGoogle Scholar
  39. Sandquist D (2013) New horizons for microfibrillated cellulose. Appita J 66(2):156–162Google Scholar
  40. Schumb W, Satterfield C, Wenthworth R (1955) Hydrogen peroxide. Reinhold Publishing Corporation, New York, pp 557–558Google Scholar
  41. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2(4):728–765CrossRefGoogle Scholar
  42. Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRefGoogle Scholar
  43. Stenstad P, Andresen M, Tanem B, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15(1):35–45CrossRefGoogle Scholar
  44. Süss H, Kronis J (1998)The correlation of COD and yield in chemical pulp bleaching. In: Tappi Breaking the Pulp Yield Barrier Symposium, Atlanta, GA, USA, 17–18 Feb, pp 153–162Google Scholar
  45. Sychev AY, Isak VG (1995) Iron compounds and the mechanisms of the homogenous catalysis of the activation of O2 and H2O2 and the oxidation of organic substrates. Russ Chem Rev 64(12):1105–1129CrossRefGoogle Scholar
  46. Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16(1):75–85CrossRefGoogle Scholar
  47. Taipale T, Österberg M, Nykänen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17(5):1005–1020CrossRefGoogle Scholar
  48. Tejado A, Alam M, Antal M, Yang H, van de Ven T (2012) Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers. Cellulose 19(3):831–842CrossRefGoogle Scholar
  49. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci, Appl Polym Symp 37:815–827Google Scholar
  50. Walter K, Paulsson M, Wackerberg E (2009) Energy efficient refining of black source TMP by using acid hydrogen peroxide: part 1. A pilot plant study. Nord Pulp Pap Res J 24(3):255–265CrossRefGoogle Scholar
  51. Walter K, Paulsson M, Hellström P (2013) Acid hydrogen peroxide treatment of Norway spruce TMP: a model study using free ferrous ions and ferric ions chelated with EDTA as catalysts. J Wood Chem Technol 33(4):267–285CrossRefGoogle Scholar
  52. Wang Z-X, Li G, Yang F, Chen Y-L, Gao P (2011) Electro-Fenton degradation of cellulose using graphite/PTFE electrodes modified by 2-ethylanthraquinone. Carbohydr Polym 86(4):1807–1813CrossRefGoogle Scholar
  53. Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6(9):754–761CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Pia Hellström
    • 1
    • 2
    Email author
  • Anette Heijnesson-Hultén
    • 1
  • Magnus Paulsson
    • 1
    • 3
  • Helena Håkansson
    • 2
  • Ulf Germgård
    • 2
  1. 1.AkzoNobel Pulp and Performance ChemicalsBohusSweden
  2. 2.Department of Engineering and Chemical SciencesKarlstad UniversityKarlstadSweden
  3. 3.FSCNMid Sweden UniversitySundsvallSweden

Personalised recommendations