Advertisement

Cellulose

, Volume 21, Issue 3, pp 2033–2043 | Cite as

Switchable water absorption of paper via liquid flame spray nanoparticle coating

  • Hannu TeisalaEmail author
  • Mikko Tuominen
  • Janne Haapanen
  • Mikko Aromaa
  • Milena Stepien
  • Jyrki M. Mäkelä
  • Jarkko J. Saarinen
  • Martti Toivakka
  • Jurkka Kuusipalo
Original Paper

Abstract

Surface wetting/anti-wetting and liquid absorption are relevant properties of many porous solids including paper and other cellulose-based materials. Here we demonstrate how surface wetting by water and water absorption of commercially available kraft paper can be altered by thin nanoparticle coatings fabricated by liquid flame spray in facile and continuous one-step process. Surface wettability and absorption properties of paper increased with silica and decreased with titania (TiO2) nanoparticle coatings. Moreover, the water-repellent (superhydrophobic) TiO2 nanoparticle coated paper could be switched to superhydrophilic and water absorbing by ultraviolet illumination. The experiments revealed that although surface wetting and liquid absorption of nanoparticle coated paper are strongly related to each other, they are two distinct phenomena which do not necessarily correlate. We propose wetting regimes on the nanoparticle coated paper samples on the basis of the experimental observations.

Keywords

Wetting Water absorption Superhydrophobic Cellulose TiO2 Photoswitching 

Notes

Acknowledgments

Tekes (Finnish Funding Agency for Technology and Innovation) is acknowledged for the financial support of this study. The work was carried out in the Functional Materials 2007–2013 programme under the project called Liquid flame spray nanocoating for flexible roll-to-roll web materials. The authors also thank Beneq, Stora Enso, and UPM-Kymmene for their contributions. The authors are grateful to Mr. Alvi Sivula (TUT, Department of Materials Science) for fabricating the suitable Cobb equipment, and to Dr. Mari Honkanen (TUT, Department of Materials Science) for the SEM images.

Supplementary material

Online Resource 1 Immersion of uncoated paper and superhydrophobic TiO2 nanoparticle coated paper in methylene blue colored water (MP4 4151 kb)

References

  1. Aromaa M, Arffman A, Suhonen H, Haapanen J, Keskinen J, Honkanen M, Nikkanen J-P, Levänen E, Messing ME, Deppert K, Teisala H, Tuominen M, Kuusipalo J, Stepien M, Saarinen JJ, Toivakka M, Mäkelä JM (2012) Atmospheric synthesis of superhydrophobic TiO2 nanoparticle deposits in a single step using liquid flame spray. J Aerosol Sci 52:57–68. doi: 10.1016/j.jaerosci.2012.04.009 CrossRefGoogle Scholar
  2. Ballerini DR, Li X, Shen W (2012) Patterned paper and alternative materials as substrates for low-cost microfluidic diagnostics. Microfluid Nanofluid 13(5):769–787. doi: 10.1007/s10404-012-0999-2 CrossRefGoogle Scholar
  3. Balu B, Breedveld V, Hess DW (2008) Fabrication of “roll-off” and “sticky” superhydrophobic cellulose surfaces via plasma processing. Langmuir 24:4785–4790CrossRefGoogle Scholar
  4. Bollström R, Määttänen A, Tobjörk D, Ihalainen P, Kaihovirta N, Österbacka R, Peltonen J, Toivakka M (2009) A multilayer coated fiber-based substrate suitable for printed functionality. Org Electron 10(5):1020–1023. doi: 10.1016/j.orgel.2009.04.014 CrossRefGoogle Scholar
  5. Eriksson M, Notley SM, Wågberg L (2007) Cellulose thin films: degree of cellulose ordering and its influence on adhesion. Biomacromolecules 8:912–919CrossRefGoogle Scholar
  6. Fujishima A, Zhang X, Tryk D (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63(12):515–582. doi: 10.1016/j.surfrep.2008.10.001 CrossRefGoogle Scholar
  7. Hu Z, Zen X, Gong J, Deng Y (2009) Water resistance improvement of paper by superhydrophobic modification with microsized CaCO3 and fatty acid coating. Colloids Surf A 351(1–3):65–70. doi: 10.1016/j.colsurfa.2009.09.036 CrossRefGoogle Scholar
  8. Jin H, Kettunen M, Laiho A, Pynnönen H, Paltakari J, Marmur A, Ikkala O, Ras RHA (2011) Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil. Langmuir 27(5):1930–1934. doi: 10.1021/la103877r CrossRefGoogle Scholar
  9. Kanta A, Sedev R, Ralston J (2005) Thermally- and photoinduced changes in the water wettability of low-surface-area silica and titania. Langmuir 21:2400–2407CrossRefGoogle Scholar
  10. Kettunen M, Silvennoinen RJ, Houbenov N, Nykänen A, Ruokolainen J, Sainio J, Pore V, Kemell M, Ankerfors M, Lindström T, Ritala M, Ras RHA, Ikkala O (2011) Photoswitchable superabsorbency based on nanocellulose aerogels. Adv Funct Mater 21(3):510–517. doi: 10.1002/adfm.201001431 CrossRefGoogle Scholar
  11. Kontturi E, Suchy M, Penttilä P, Jean B, Pirkkalainen K, Torkkeli M, Serimaa R (2011) Amorphous characteristics of an ultrathin cellulose film. Biomacromolecules 12(3):770–777. doi: 10.1021/bm101382q CrossRefGoogle Scholar
  12. Kordas K, Mustonen T, Toth G, Jantunen H, Lajunen M, Soldano C, Talapatra S, Kar S, Vajtai R, Ajayan PM (2006) Inkjet printing of electrically conductive patterns of carbon nanotubes. Small 2(8–9):1021–1025. doi: 10.1002/smll.200600061 CrossRefGoogle Scholar
  13. Kuusipalo J (ed) (2008) Paper and paperboard converting, 2nd edn. Paperi ja Puu Oy, JyväskyläGoogle Scholar
  14. Lamminmäki TT, Kettle JP, Gane PAC (2011) Absorption and adsorption of dye-based inkjet inks by coating layer components and the implications for print quality. Colloids Surf A 380(1–3):79–88. doi: 10.1016/j.colsurfa.2011.02.015 CrossRefGoogle Scholar
  15. Mäkelä JM, Aromaa M, Teisala H, Tuominen M, Stepien M, Saarinen JJ, Toivakka M, Kuusipalo J (2011) Nanoparticle deposition from liquid flame spray onto moving roll-to-roll paperboard material. Aerosol Sci Technol 45(7):827–837. doi: 10.1080/02786826.2011.566292 CrossRefGoogle Scholar
  16. Mukhopadhyay SM, Joshi P, Datta S, Macdaniel J (2002) Plasma assisted surface coating of porous solids. Appl Surf Sci 201:219–226CrossRefGoogle Scholar
  17. Stanssens D, Van den Abbeele H, Vonck L, Schoukens G, Deconinck M, Samyn P (2011) Creating water-repellent and super-hydrophobic cellulose substrates by deposition of organic nanoparticles. Mater Lett 65(12):1781–1784. doi: 10.1016/j.matlet.2011.03.057 CrossRefGoogle Scholar
  18. Stepien M, Saarinen JJ, Teisala H, Tuominen M, Aromaa M, Kuusipalo J, Mäkelä JM, Toivakka M (2011) Adjustable wettability of paperboard by liquid flame spray nanoparticle deposition. Appl Surf Sci 257(6):1911–1917. doi: 10.1016/j.apsusc.2010.09.025 CrossRefGoogle Scholar
  19. Stepien M, Saarinen JJ, Teisala H, Tuominen M, Aromaa M, Kuusipalo J, Mäkelä JM, Toivakka M (2012a) Surface chemical analysis of photocatalytic wettability conversion of TiO2 nanoparticle coating. Surf Coat Technol 208:73–79. doi: 10.1016/j.surfcoat.2012.08.008 CrossRefGoogle Scholar
  20. Stepien M, Saarinen JJ, Teisala H, Tuominen M, Aromaa M, Kuusipalo J, Mäkelä JM, Toivakka M (2012b) Surface chemical characterization of nanoparticle coated paperboard. Appl Surf Sci 258(7):3119–3125. doi: 10.1016/j.apsusc.2011.11.048 CrossRefGoogle Scholar
  21. Stepien M, Chinga-Carrasco G, Saarinen JJ, Teisala H, Tuominen M, Aromaa M, Haapanen J, Kuusipalo J, Mäkelä JM, Toivakka M (2013a) Wear resistance of nanoparticle coatings on paperboard. Wear 307(1–2):112–118. doi: 10.1016/j.wear.2013.08.022 CrossRefGoogle Scholar
  22. Stepien M, Saarinen JJ, Teisala H, Tuominen M, Aromaa M, Haapanen J, Kuusipalo J, Mäkelä JM, Toivakka M (2013b) ToF-SIMS analysis of UV-switchable TiO2-nanoparticle-coated paper surface. Langmuir 29(11):3780–3790. doi: 10.1021/la304731m CrossRefGoogle Scholar
  23. Swerin A, König A, Brandner B, Andersson K, Lindgren E (2008) The use of silica pigments in coated media for inkjet printing: Effects of absorption and porosity on printing performance and depth-profiling using confocal Raman spectroscopy. In: TAPPI Advanced coating fundamentals symposium proceedings, 2008, pp 178–203Google Scholar
  24. Teisala H, Tuominen M, Aromaa M, Mäkelä JM, Stepien M, Saarinen JJ, Toivakka M, Kuusipalo J (2010) Development of superhydrophobic coating on paperboard surface using the liquid flame spray. Surf Coat Technol 205(2):436–445. doi: 10.1016/j.surfcoat.2010.07.003 CrossRefGoogle Scholar
  25. Teisala H, Tuominen M, Aromaa M, Stepien M, Mäkelä JM, Saarinen JJ, Toivakka M, Kuusipalo J (2012a) Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces. Langmuir 28(6):3138–3145. doi: 10.1021/la203155d CrossRefGoogle Scholar
  26. Teisala H, Tuominen M, Stepien M, Haapanen J, Mäkelä JM, Saarinen JJ, Toivakka M, Kuusipalo J (2012b) Wettability conversion on the liquid flame spray generated superhydrophobic TiO2 nanoparticle coating on paper and board by photocatalytic decomposition of spontaneously accumulated carbonaceous overlayer. Cellulose 20(1):391–408. doi: 10.1007/s10570-012-9825-y CrossRefGoogle Scholar
  27. Teisala H, Tuominen M, Aromaa M, Stepien M, Mäkelä JM, Saarinen JJ, Toivakka M, Kuusipalo J (2013a) Nanoparticle deposition on packaging materials by liquid flame spray-generation of superhydrophilic and superhydrophobic coatings. In: Gutowski W, Dodiuk H (eds) Recent Advances in Adhesion Science and Technology in Honor of Dr. Kash Mittal. Taylor & Francis, CRC Press, ISBN: 978-90-0420-173-6. doi: 10.1201/b16347-25
  28. Teisala H, Tuominen M, Kuusipalo J (2013b) Superhydrophobic coatings on cellulose-based materials: fabrication, properties, and applications. Adv Mater Interfaces. doi: 10.1002/admi.201300026 Google Scholar
  29. Tobjörk D, Österbacka R (2011) Paper electronics. Adv Mater 23(17):1935–1961. doi: 10.1002/adma.201004692 CrossRefGoogle Scholar
  30. Verho T, Korhonen JT, Sainiemi L, Jokinen V, Bower C, Franze K, Franssila S, Andrew P, Ikkala O, Ras RHA (2012) Reversible switching between superhydrophobic states on a hierarchically structured surface. PNAS 109(26):10210–10213. doi: 10.1073/pnas.1204328109 CrossRefGoogle Scholar
  31. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Light-induced amphiphilic surfaces. Nature 388:431–432CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Hannu Teisala
    • 1
    Email author
  • Mikko Tuominen
    • 1
  • Janne Haapanen
    • 2
  • Mikko Aromaa
    • 2
  • Milena Stepien
    • 3
  • Jyrki M. Mäkelä
    • 2
  • Jarkko J. Saarinen
    • 3
  • Martti Toivakka
    • 3
  • Jurkka Kuusipalo
    • 1
  1. 1.Paper Converting and Packaging Technology, Department of Materials ScienceTampere University of TechnologyTampereFinland
  2. 2.Aerosol Physics Laboratory, Department of PhysicsTampere University of TechnologyTampereFinland
  3. 3.Laboratory of Paper Coating and Converting, Center for Functional MaterialsAbo Akademi UniversityAbo/TurkuFinland

Personalised recommendations