Advertisement

Cellulose

, Volume 21, Issue 3, pp 1517–1528 | Cite as

Individual cotton cellulose nanofibers: pretreatment and fibrillation technique

  • Wenshuai Chen
  • Kentaro Abe
  • Kojiro Uetani
  • Haipeng Yu
  • Yixing Liu
  • Hiroyuki Yano
Original Paper

Abstract

We report a method to fibrillate raw dried cotton fibers into individual cellulose nanofibers (CNFs) by chemical purification (removal of non-cellulosic components) and pretreatment by a high-speed blender (breaking down the fiber structures) combined with high-pressure homogenization (nanofibrillation). The resultant CNFs were found to have a width of approximately 10–30 nm and high aspect ratios. The high light transmittance of the CNF/acrylic resin composite indicated that our treatment successfully disintegrated the raw cotton fibers into uniform CNFs. The cotton CNFs were found to have the advantages of high crystallinity and thermal stability.

Graphical Abstract

Keywords

Cellulose nanofibers Cotton Nanofibrillation Crystallinity Thermal property 

Notes

Acknowledgments

We thank Dr Thi Thu Thao Ho, of the Research Institute for Sustainable Humanosphere, Kyoto University, for her kind help in using a high-pressure homogenizer, and for fruitful discussions on the data analysis. We are also grateful to thank Dr Yoshiki Horikawa, of the Research Institute for Sustainable Humanosphere, Kyoto University, for the staining of the TEM samples. Wenshuai Chen was also partially supported by the Program for New Century Excellent Talents in University (NCET-10-0313), China.

References

  1. Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromol 8(10):3276–3278CrossRefGoogle Scholar
  2. Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16(6):1017–1023CrossRefGoogle Scholar
  3. Abe K, Yano H (2010) Comparison of the characteristics of cellulose microfibril aggregates isolated from fiber and parenchyma cells of Moso bamboo (Phyllostachys pubescens). Cellulose 17(2):271–277CrossRefGoogle Scholar
  4. Capadona JR, Van Den Berg O, Capadona LA, Schroeter M, Rowan SJ, Tyler DJ, Weder C (2007) A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nat Nanotechnol 2(12):765–769CrossRefGoogle Scholar
  5. Chen W, Yu H, Li Q, Liu Y, Li J (2011a) Ultralight and highly flexible aerogels with long cellulose I nanofibers. Soft Matter 7(21):10360–10368CrossRefGoogle Scholar
  6. Chen W, Yu H, Liu Y (2011b) Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from bamboo fibers. Carbohydr Polym 86(2):453–461CrossRefGoogle Scholar
  7. Chen W, Yu H, Liu Y, Chen P, Zhang M, Ha Y (2011c) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83(4):1804–1811CrossRefGoogle Scholar
  8. Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011d) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18(2):433–442CrossRefGoogle Scholar
  9. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33CrossRefGoogle Scholar
  10. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2007) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9(1):57–65CrossRefGoogle Scholar
  11. Espinosa SC, Kuhnt T, Foster EJ, Weder C (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromol 14:1223–1230CrossRefGoogle Scholar
  12. Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2008) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromol 10(1):162–165CrossRefGoogle Scholar
  13. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500CrossRefGoogle Scholar
  14. Herrick FW, Casebier RL, Hamilton JK (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 37:797–813Google Scholar
  15. Hu L, Zheng G, Yao J, Liu N, Weil B, Eskilsson M, Karabulut E, Ruan Z, Fan S, Bloking JT, McGehee MD, Wågberg L, Cui Y (2013) Transparent and conductive paper from nanocellulose fibers. Energ Environ Sci 6(2):513–518CrossRefGoogle Scholar
  16. Huang J, Zhu H, Chen Y, Preston C, Rohrbach K, Cumings J, Hu L (2013) Highly transparent and flexible nanopaper transistors. ACS Nano 7(3):2106–2113CrossRefGoogle Scholar
  17. Ifuku S, Nogi M, Abe K, Yoshioka M, Morimoto M, Saimoto H, Yano H (2009) Preparation of chitin nanofibers with a uniform width as α-chitin from crab shells. Biomacromol 10(6):1584–1588CrossRefGoogle Scholar
  18. Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromol 9(3):1022–1026CrossRefGoogle Scholar
  19. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Edit 50(24):5438–5466CrossRefGoogle Scholar
  20. Kurihara T, Isogai A (2014) Properties of poly (acrylamide)/TEMPO-oxidized cellulose nanofibril composite films. Cellulose. doi: 10.1007/s10570-013-0124-z Google Scholar
  21. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994CrossRefGoogle Scholar
  22. Nakagaito A, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A 80(1):155–159CrossRefGoogle Scholar
  23. Nogi M, Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20(10):1849–1852CrossRefGoogle Scholar
  24. Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21(16):1595–1598CrossRefGoogle Scholar
  25. Olsson RT, Azizi Samir MAS, Salazar-Alvarez G, Belova L, Ström V, Berglund LA, Ikkala O, Nogues J, Gedde UW (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5(8):584–588CrossRefGoogle Scholar
  26. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8(6):1934–1941CrossRefGoogle Scholar
  27. Pääkkö M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindström T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4(12):2492–2499CrossRefGoogle Scholar
  28. Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromol 5:1671–1677CrossRefGoogle Scholar
  29. Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromol 7(6):1687–1691CrossRefGoogle Scholar
  30. Saito T, Uematsu T, Kimura S, Enomae T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7(19):8804–8809CrossRefGoogle Scholar
  31. Segal L, Creely J, Martin A, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794CrossRefGoogle Scholar
  32. Sehaqui H, Salajková M, Zhou Q, Berglund LA (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6(8):1824–1832CrossRefGoogle Scholar
  33. Sehaqui H, Zhou Q, Berglund LA (2011) Nanostructured biocomposites of high toughness—a wood cellulose nanofiber network in ductile hydroxyethylcellulose matrix. Soft Matter 7(16):7342–7350CrossRefGoogle Scholar
  34. Svagan AJ, Samir MASA, Berglund LA (2008) Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Adv Mater 20(7):1263–1269CrossRefGoogle Scholar
  35. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci: Appl Polym Symp 37:815–827Google Scholar
  36. Uetani K, Yano H (2010) Nanofibrillation of wood pulp using a high-speed blender. Biomacromol 12(2):348–353CrossRefGoogle Scholar
  37. Uetani K, Yano H (2013) Self-organizing capacity of nanocelluloses via droplet evaporation. Soft Matter 9:3396–3401CrossRefGoogle Scholar
  38. Wakelyn PJ, Bertoniere NR (2006) Cotton Fiber Chemistry and Technology. CRC PressGoogle Scholar
  39. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12):1781–1788CrossRefGoogle Scholar
  40. Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17(2):153–155CrossRefGoogle Scholar
  41. Zhao HP, Feng XQ, Gao H (2007) Ultrasonic technique for extracting nanofibers from nature materials. Appl Phys Lett 90 (7): 073112-073112-2Google Scholar
  42. Zhou Q, Malm E, Nilsson H, Larsson PT, Iversen T, Berglund LA, Bulone V (2009) Nanostructured biocomposites based on bacterial cellulosic nanofibers compartmentalized by a soft hydroxyethylcellulose matrix coating. Soft Matter 5(21):4124–4130CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Wenshuai Chen
    • 1
    • 2
  • Kentaro Abe
    • 1
  • Kojiro Uetani
    • 1
  • Haipeng Yu
    • 2
  • Yixing Liu
    • 2
  • Hiroyuki Yano
    • 1
  1. 1.Research Institute for Sustainable HumanosphereKyoto UniversityUjiJapan
  2. 2.Key Laboratory of Bio-based Material Science and Technology, Ministry of EducationNortheast Forestry UniversityHarbinChina

Personalised recommendations