Advertisement

Cellulose

, Volume 20, Issue 5, pp 2191–2219 | Cite as

Biosynthesis, production and applications of bacterial cellulose

  • Shin-Ping Lin
  • Iris Loira Calvar
  • Jeffrey M. Catchmark
  • Je-Ruei Liu
  • Ali Demirci
  • Kuan-Chen Cheng
Review Paper

Abstract

Bacterial cellulose (BC) as a never-dried biopolymer synthesized in abundance by Gluconacetobacter xylinus is in a pure form which requires no intensive processing to remove unwanted impurities and contaminants such as lignin, pectin and hemicellulose. In contrast to plant cellulose, BC, with several remarkable physical properties, can be grown to any desired shape and structure to meet the needs of different applications. BC has been commercialized as diet foods, filtration membranes, paper additives, and wound dressings. This review article presents an overview of BC structure, biosynthesis, applications, state-of-the-art advances in enhancing BC production, and its material properties through the investigations of genetic regulations, fermentation parameters, and bioreactor design. In addition, future prospects on its applications through chemical modification as a new biologically active derivative will be discussed.

Keywords

Gluconacetobacter xylinus Biosynthesis Bacterial cellulose Cellulose modification Cellulose production Cellulose application 

References

  1. Aloni Y, Delmer DP, Benziman M (1982) Achievement of high rates of in vitro synthesis of 1, 4-beta-d-glucan: activation by cooperative interaction of the Acetobacter xylinum enzyme system with GTP, polyethylene glycol, and a protein factor. Proc Natl Acad Sci USA 79(21):6448–6452CrossRefGoogle Scholar
  2. Alvarez DA, Petty JD, Huckins JN, Jones-Lepp TL, Getting DT, Goddard JP, Manahan SE (2004) Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments. Environ Toxicol Chem 23(7):1640–1648CrossRefGoogle Scholar
  3. Amin MCIM, Abadi AG, Ahmad N, Katas H, Jamal JA (2012a) Bacterial cellulose film coating as drug delivery system: physicochemical, thermal and drug release properties. Sains Malaysiana 41(5):561–568Google Scholar
  4. Amin MCIM, Abadi AG, Ahmad N, Katas H, Jamal JA (2012b) Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym 88(2):465–473. doi: 10.1016/j.carbpol.2011.12.022 CrossRefGoogle Scholar
  5. Ammon HP, Ege W, Oppermann M, Gopel W, Eisele S (1995) Improvement in the long-term stability of an amperometric glucose sensor system by introducing a cellulose membrane of bacterial origin. Anal Chem 67(2):466–471CrossRefGoogle Scholar
  6. Andersson J, Stenhamre H, Backdahl H, Gatenholm P (2010) Behavior of human chondrocytes in engineered porous bacterial cellulose scaffolds. J Biomed Mater Res A 94A(4):1124–1132. doi: 10.1002/Jbm.A.32784 Google Scholar
  7. Andrade FK, Costa R, Domingues L, Soares R, Gama M (2010a) Improving bacterial cellulose for blood vessel replacement: functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide. Acta Biomater 6(10):4034–4041. doi: 10.1016/j.actbio.2010.04.023 CrossRefGoogle Scholar
  8. Andrade FK, Moreira SMG, Domingues L, Gama FMP (2010b) Improving the affinity of fibroblasts for bacterial cellulose using carbohydrate-binding modules fused to RGD. J Biomed Mater Res A 92A(1):9–17. doi: 10.1002/Jbm.A.32284 CrossRefGoogle Scholar
  9. Ashori A, Sheykhnazari S, Tabarsa T, Shakeri A, Golalipour M (2012) Bacterial cellulose/silica nanocomposites: preparation and characterization. Carbohydr Polym 90(1):413–418. doi: 10.1016/j.carbpol.2012.05.060 CrossRefGoogle Scholar
  10. Backdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27(9):2141–2149. doi: 10.1016/j.biomaterials.2005.10.026 CrossRefGoogle Scholar
  11. Bäckdahl H, Risberg B, Gatenholm P (2011) Observations on bacterial cellulose tube formation for application as vascular graft. Mater Sci Eng C Mater Biol Appl: C 31(1):14–21. doi: 10.1016/j.msec.2010.07.010 CrossRefGoogle Scholar
  12. Bae S, Sugano Y, Shoda M (2004) Improvement of bacterial cellulose production by addition of agar in a jar fermentor. J Biosci Bioeng 97(1):33–38. doi: 10.1016/S1389-1723(04)70162-0 Google Scholar
  13. Barud HS, Regiani T, Marques RFC, Lustri WR, Messaddeq Y, Ribeiro SJL (2011) Antimicrobial bacterial cellulose-silver nanoparticles composite membranes. J Nanomater. doi:  10.1155/2011/721631
  14. Ben-Hayyim G, Ohad I (1965) Synthesis of cellulose by Acetobacter xylinum: VIII. On the formation and orientation of bacterial cellulose fibrils in the presence of acidic polysaccharides. J Cell Biol 25(2):191–207CrossRefGoogle Scholar
  15. Benziman M, Haigler CH, Brown RM, White AR, Cooper KM (1980) Cellulose biogenesis: polymerization and crystallization are coupled processes in Acetobacter xylinum. Proc Natl Acad Sci USA 77(11):6678–6682CrossRefGoogle Scholar
  16. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM (1925) Bergey’s manual of systematic bacteriology, 2nd edn. Williams & Wilkins, New YorkGoogle Scholar
  17. Bhowmick PP, Devegowda D, Ruwandeepika HAD, Fuchs TM, Srikumar S, Karunasagar I, Karunasagar I (2011) gcpA (stm1987) is critical for cellulose production and biofilm formation on polystyrene surface by Salmonella enterica serovar Weltevreden in both high and low nutrient medium. Microb Pathog 50(2):114–122. doi: 10.1016/j.micpath.2010.12.002 CrossRefGoogle Scholar
  18. Bodin A, Bharadwaj S, Wu SF, Gatenholm P, Atala A, Zhang YY (2010) Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. Biomaterials 31(34):8889–8901. doi: 10.1016/j.biomaterials.2010.07.108 CrossRefGoogle Scholar
  19. Brackmann C, Zaborowska M, Sundberg J, Gatenholm P, Enejder A (2012) In situ imaging of collagen synthesis by osteoprogenitor cells in microporous bacterial cellulose scaffolds. Tissue Eng Part C Methods 18(3):227–234. doi: 10.1089/ten.TEC.2011.0211 CrossRefGoogle Scholar
  20. Brown AJ (1886) LXII-Further notes on the chemical action of Bacterium aceti. J Chem Soc 51:638–643Google Scholar
  21. Brown RM Jr (1985) Cellulose microfibril assembly and orientation: recent developments. J Cell Sci Suppl 2:13–32CrossRefGoogle Scholar
  22. Brown RM (2004) Cellulose structure and biosynthesis: what is in store for the 21st century? J Polym Sci Pol Chem 42(3):487–495. doi: 10.1002/Pola.10877 CrossRefGoogle Scholar
  23. Brown RM Jr, Willison JH, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci USA 73(12):4565–4569CrossRefGoogle Scholar
  24. Bungay, Henry R, Serafica, Gonzalo C (1991) Production of microbial cellulose. Us Patent US6071727, 2000/06/06Google Scholar
  25. Bureau TE, Brown RM (1987) In vitro synthesis of cellulose II from a cytoplasmic membrane fraction of Acetobacter xylinum. Proc Natl Acad Sci USA 84(20):6985–6989CrossRefGoogle Scholar
  26. Cai Z, Kim J (2010) Bacterial cellulose/poly(ethylene glycol) composite: characterization and first evaluation of biocompatibility. Cellulose 17(1):83–91. doi: 10.1007/s10570-009-9362-5 CrossRefGoogle Scholar
  27. Cannon RE, Anderson SM (1991) Biogenesis of bacterial cellulose. Crit Rev Microbiol 17(6):435–447. doi: 10.3109/10408419109115207 CrossRefGoogle Scholar
  28. Carreira P, Mendes JA, Trovatti E, Serafim LS, Freire CS, Silvestre AJ, Neto CP (2011) Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Bioresour Technol 102(15):7354–7360. doi: 10.1016/j.biortech.2011.04.081 CrossRefGoogle Scholar
  29. Castro C, Zuluaga R, Putaux J-L, Caro G, Mondragon I, Gañán P (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polym 84(1):96–102. doi: 10.1016/j.carbpol.2010.10.072 CrossRefGoogle Scholar
  30. Chao YP, Sugano Y, Kouda T, Yoshinaga F, Shoda M (1997) Production of bacterial cellulose by Acetobacter xylinum with an air-lift reactor. Biotechnol Tech 11(11):829–832. doi: 10.1023/A:1018433526709 CrossRefGoogle Scholar
  31. Chao YP, Ishida T, Sugano Y, Shoda M (2000) Bacterial cellulose production by Acetobacter xylinum in a 50-L internal-loop airlift reactor. Biotechnol Bioeng 68(3):345–352. doi: 10.1002/(Sici)1097-0290(20000505)68:3<345:Aid-Bit13>3.3.Co;2-D CrossRefGoogle Scholar
  32. Chao Y, Mitarai M, Sugano Y, Shoda M (2001a) Effect of addition of water-soluble polysaccharides on bacterial cellulose production in a 50-L airlift reactor. Biotechnol Prog 17(4):781–785. doi: 10.1021/bp010046b CrossRefGoogle Scholar
  33. Chao Y, Sugano Y, Shoda M (2001b) Bacterial cellulose production under oxygen-enriched air at different fructose concentrations in a 50-liter, internal-loop airlift reactor. Appl Microbiol Biotechnol 55(6):673–679CrossRefGoogle Scholar
  34. Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotech 47(2):107–124Google Scholar
  35. Chen S, Shen W, Yu F, Wang H (2009a) Kinetic and thermodynamic studies of adsorption of Cu2+ and Pb2+ onto amidoximated bacterial cellulose. Polym Bull 63(2):283–297. doi: 10.1007/s00289-009-0088-1 CrossRefGoogle Scholar
  36. Chen S, Zou Y, Yan Z, Shen W, Shi S, Zhang X, Wang H (2009b) Carboxymethylated-bacterial cellulose for copper and lead ion removal. J Hazardous Mater 161(2–3):1355–1359. doi: 10.1016/j.jhazmat.2008.04.098 CrossRefGoogle Scholar
  37. Cheng HP, Wang PM, Chen JW, Wu WT (2002) Cultivation of Acetobacter xylinum for bacterial cellulose production in a modified airlift reactor. Biotechnol Appl Biochem 35(Pt 2):125–132CrossRefGoogle Scholar
  38. Cheng KC, Catchmark JM, Demirci A (2009a) Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose 16(6):1033–1045CrossRefGoogle Scholar
  39. Cheng KC, Catchmark JM, Demirci A (2009b) Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Biol Eng 3:12CrossRefGoogle Scholar
  40. Cheng KC, Catchmark JM, Demirci A (2011) Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Biomacromolecules 12(3):730–736CrossRefGoogle Scholar
  41. Choi J, Park S, Cheng J, Park M, Hyun J (2012) Amphiphilic comb-like polymer for harvest of conductive nano-cellulose. Colloids Surf B Biointerfaces 89:161–166. doi: 10.1016/j.colsurfb.2011.09.008 CrossRefGoogle Scholar
  42. Colvin JR, Leppard GG (1977) The biosynthesis of cellulose by Acetobacter xylinum and Acetobacter aceti genus. Can J Microbiol 23(6):701–709CrossRefGoogle Scholar
  43. Cook KE, Colvin JR (1980) Evidence for a beneficial influence of cellulose production on growth of Acetobacter xylinum in liquid-medium. Curr Microbiol 3(4):203–205. doi: 10.1007/Bf02602449 CrossRefGoogle Scholar
  44. Coucheron DH (1991) An Acetobacter xylinum insertion sequence element associated with inactivation of cellulose production. J Bacteriol 173(18):5723–5731Google Scholar
  45. Czaja W, Krystynowicz A, Bielecki S, Brown RM Jr (2006) Microbial cellulose—the natural power to heal wounds. Biomaterials 27(2):145–151. doi: 10.1016/j.biomaterials.2005.07.035 CrossRefGoogle Scholar
  46. Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1):1–12. doi: 10.1021/Bm060620d CrossRefGoogle Scholar
  47. Deinema MH, Zevenhuizen LP (1971) Formation of cellulose fibrils by gram-negative bacteria and their role in bacterial flocculation. Arch Mikrobiol 78(1):42–51CrossRefGoogle Scholar
  48. Delmer DP (1999) Cellulose biosynthesis: exciting times for a difficult field of study. Annu Rev Plant Physiol Plant Mol Biol 50:245–276. doi: 10.1146/annurev.arplant.50.1.245 CrossRefGoogle Scholar
  49. Delmer DP, Benziman M, Padan E (1982) Requirement for a membrane potential for cellulose synthesis in intact cells of Acetobacter xylinum. Proc Natl Acad Sci USA 79(17):5282–5286CrossRefGoogle Scholar
  50. Deslandes Y, Marchessault RH (1983) Cellulose and other natural polymer systems: biogenesis, structure, and degradation, R. Malcolm Brown, Jr., ed., Plenum, New York, 1982, 519 pp. Price: 9.50. J Polym Sci Polym Lett Ed 21(7):583. doi: 10.1002/pol.1983.130210713 CrossRefGoogle Scholar
  51. DeWulf P, Joris K, Vandamme EJ (1996) Improved cellulose formation by an Acetobacter xylinum mutant limited in (keto)gluconate synthesis. J Chem Technol Biot 67(4):376–380. doi: 10.1002/(Sici)1097-4660(199612)67:4<376:Aid-Jctb569>3.0.Co;2-J CrossRefGoogle Scholar
  52. El-Saied H, El-Diwany AI, Basta AH, Atwa NA, El-Ghwas DE (2008) Production and characterization of economical bacterial cellulose. BioResources 3:1196–1217Google Scholar
  53. Embuscado ME, Marks JS, Bemiller JN (1994) Bacterial cellulose. 1. Factors affecting the production of cellulose by Acetobacter xylinum. Food Hydrocolloid 8(5):407–418CrossRefGoogle Scholar
  54. Eming SA, Smola H, Krieg T (2002) Treatment of chronic wounds: state of the art and future concepts. Cells Tissues Organs 172(2):105–117CrossRefGoogle Scholar
  55. Esguerra M, Fink H, Laschke MW, Jeppsson A, Delbro D, Gatenholm P, Menger MD, Risberg B (2010) Intravital fluorescent microscopic evaluation of bacterial cellulose as scaffold for vascular grafts. J Biomed Mater Res A 93A(1):140–149. doi: 10.1002/Jbm.A.32516 Google Scholar
  56. Evans BR, O’Neill HM, Jansen VM, Woodward J (2005) Metallization of bacterial cellulose for electrical and electronic device manufacture. Us Patent US7803477, 2010/09/28Google Scholar
  57. Extremina CI, Fonseca AF, Granja PL, Fonseca AP (2010) Anti-adhesion and antiproliferative cellulose triacetate membrane for prevention of biomaterial-centred infections associated with Staphylococcus epidermidis. Int J Antimicrob Agents 35(2):164–168. doi: 10.1016/j.ijantimicag.2009.09.017 CrossRefGoogle Scholar
  58. Fang B, Wan YZ, Tang TT, Gao C, Dai KR (2009) Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Tissue Eng Part A 15(5):1091–1098. doi: 10.1089/ten.tea.2008.0110 CrossRefGoogle Scholar
  59. Feng Y, Zhang X, Shen Y, Yoshino K, Feng W (2012) A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohydr Polym 87(1):644–649. doi: 10.1016/j.carbpol.2011.08.039 CrossRefGoogle Scholar
  60. Fink H, Faxalv L, Molnar GF, Drotz K, Risberg B, Lindahl TL, Sellborn A (2010) Real-time measurements of coagulation on bacterial cellulose and conventional vascular graft materials. Acta Biomater 6(3):1125–1130. doi: 10.1016/j.actbio.2009.09.019 CrossRefGoogle Scholar
  61. Fink H, Hong J, Drotz K, Risberg B, Sanchez J, Selborn A (2011) An study of blood compatibility of vascular grafts made of bacterial cellulose in comparison with conventionally-used graft materials. J Biomed Mater Res A 97A(1):52–58. doi: 10.1002/Jbm.A.33031 CrossRefGoogle Scholar
  62. Finkenstadt VL, Millane RP (1998) Fiber diffraction patterns for general unit cells: the cylindrically projected reciprocal lattice. Acta Crystallogr Sect A: Found Crystallogr 54(Pt 2):240–248CrossRefGoogle Scholar
  63. Fujiwara T, Kawabata S, Hamada S (1992) Molecular characterization and expression of the cell-associated glucosyltransferase gene from Streptococcus mutans. Biochem Biophys Res Commun 187(3):1432–1438CrossRefGoogle Scholar
  64. George J, Siddaramaiah (2012) High performance edible nanocomposite films containing bacterial cellulose nanocrystals. Carbohydr Polym 87(3):2031–2037. doi: 10.1016/j.carbpol.2011.10.019 CrossRefGoogle Scholar
  65. Glaser L (1958) The synthesis of cellulose in cell-free extracts of Acetobacter xylinum. J Biol Chem 232(2):627–636Google Scholar
  66. Goelzer FDE, Faria-Tischer PCS, Vitorino JC, Sierakowski MR, Tischer CA (2009) Production and characterization of nanospheres of bacterial cellulose from Acetobacter xylinum from processed rice bark. Mater Sci Eng, C 29(2):546–551. doi: 10.1016/j.msec.2008.10.013 CrossRefGoogle Scholar
  67. Grande CJ, Torres FG, Gomez CM, Bano MC (2009) Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater 5(5):1605–1615. doi: 10.1016/j.actbio.2009.01.022 CrossRefGoogle Scholar
  68. Griffin AM, Morris VJ, Gasson MJ (1996) Identification, cloning and sequencing the aceA gene involved in acetan biosynthesis in Acetobacter xylinum. FEMS Microbiol Lett 137(1):115–121CrossRefGoogle Scholar
  69. Gutierrez J, Fernandes SC, Mondragon I, Tercjak A (2012a) Conductive photoswitchable vanadium oxide nanopaper based on bacterial cellulose. ChemSusChem. doi: 10.1002/cssc.201200516
  70. Gutierrez J, Tercjak A, Algar I, Retegi A, Mondragon I (2012b) Conductive properties of TiO2/bacterial cellulose hybrid fibres. J Colloid Interface Sci 377(1):88–93. doi: 10.1016/j.jcis.2012.03.075 CrossRefGoogle Scholar
  71. Ha J, Park J (2012) Improvement of bacterial cellulose production in Acetobacter xylinum using byproduct produced by Gluconacetobacter hansenii. Korean J Chem Eng 29(5):563–566. doi: 10.1007/s11814-011-0224-0 CrossRefGoogle Scholar
  72. Ha J, Shehzad O, Khan S, Lee S, Park J, Khan T, Park J (2008) Production of bacterial cellulose by a static cultivation using the waste from beer culture broth. Korean J Chem Eng 25(4):812–815. doi: 10.1007/s11814-008-0134-y CrossRefGoogle Scholar
  73. Ha JH, Shah N, Ul-Islam M, Khan T, Park JK (2011) Bacterial cellulose production from a single sugar α-linked glucuronic acid-based oligosaccharide. Process Biochem 46(9):1717–1723. doi: 10.1016/j.procbio.2011.05.024 CrossRefGoogle Scholar
  74. Haigler CH (1985) Cellulose chemistry and its applications. In: Zeronian SH, Nevell TP (eds) Ellis Horwood, England, pp 30–83Google Scholar
  75. Haigler CH, Malcolmbrown R, Benziman M (1980) Calcofluor White St Alters the invivo assembly of cellulose microfibrils. Science 210(4472):903–906. doi: 10.1126/science.7434003 CrossRefGoogle Scholar
  76. Helenius G, Backdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 76A(2):431–438. doi: 10.1002/Jbm.A.30570 CrossRefGoogle Scholar
  77. Henneberg W (1906) Bergey’s manual of systematic bacteriology. In: Garrity GM (ed) Bergey’s manual of systematic bacteriology. Williams & Wilkins, New YorkGoogle Scholar
  78. Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345–352Google Scholar
  79. Hestrin S, Aschner M, Mager J (1947) Synthesis of cellulose by resting cells of Acetobacter-Xylinum. Nature 159(4028):64–65. doi: 10.1038/159064a0 CrossRefGoogle Scholar
  80. Hibbert H, Barsha J (1931) Synthetic cellulose and textile fibers from glucose. J Am Chem Soc 53:3907. doi: 10.1021/Ja01361a507 CrossRefGoogle Scholar
  81. Hofinger M, Bertholdt G, Weuster-Botz D (2011) Microbial production of homogeneously layered cellulose pellicles in a membrane bioreactor. Biotechnol Bioeng 108(9):2237–2240. doi: 10.1002/bit.23162 CrossRefGoogle Scholar
  82. Hong F, Qiu K (2008) An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohydr Polym 72(3):545–549. doi: 10.1016/j.carbpol.2007.09.015 CrossRefGoogle Scholar
  83. Hong F, Zhu YX, Yang G, Yang XX (2011) Wheat straw acid hydrolysate as a potential cost-effective feedstock for production of bacterial cellulose. J Chem Technol Biot 86(5):675–680. doi: 10.1002/jctb.2567 CrossRefGoogle Scholar
  84. Hong F, Guo X, Zhang S, Han S-f, Yang G, Jönsson LJ (2012) Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment. Bioresource Technol 104:503–508. doi: 10.1016/j.biortech.2011.11.028 CrossRefGoogle Scholar
  85. Hornung M, Ludwig M, Gerrard AM, Schmauder HP (2006) Optimizing the production of bacterial cellulose in surface culture: evaluation of substrate mass transfer influences on the bioreaction (Part 1). Eng Life Sci 6(6):537–545. doi: 10.1002/elsc.200620162 CrossRefGoogle Scholar
  86. Hornung M, Ludwig M, Schmauder HP (2007) Optimizing the production of bacterial cellulose in surface culture: a novel aerosol bioreactor working on a fed batch principle (Part 3). Eng Life Sci 7(1):35–41. doi: 10.1002/elsc.200620164 CrossRefGoogle Scholar
  87. Hu Y (2011) A Novel Bioabsorbable bacterial cellulose. PhD dissertation, The Pennsylvania State University, Penn StateGoogle Scholar
  88. Hu Y, Catchmark JM (2010a) Formation and characterization of spherelike bacterial cellulose particles produced by Acetobacter xylinum JCM 9730 strain. Biomacromolecules 11(7):1727–1734. doi: 10.1021/Bm100060v CrossRefGoogle Scholar
  89. Hu Y, Catchmark JM (2010b) Influence of 1-methylcyclopropene (1-MCP) on the production of bacterial cellulose biosynthesized by Acetobacter xylinum under the agitated culture. Lett Appl Microbiol 51(1):109–113. doi: 10.1111/j.1472-765X.2010.02866.x Google Scholar
  90. Hu Y, Catchmark JM (2011a) In vitro biodegradability and mechanical properties of bioabsorbable bacterial cellulose incorporating cellulases. Acta Biomater 7(7):2835–2845. doi: 10.1016/j.actbio.2011.03.028 CrossRefGoogle Scholar
  91. Hu Y, Catchmark JM (2011b) Integration of cellulases into bacterial cellulose: toward bioabsorbable cellulose composites. J Biomed Mater Res B 97B(1):114–123. doi: 10.1002/Jbm.B.31792 CrossRefGoogle Scholar
  92. Hu W, Chen S, Li X, Shi S, Shen W, Zhang X, Wang H (2009) In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes. Mater Sci Eng, C 29(4):1216–1219. doi: 10.1016/j.msec.2008.09.017 CrossRefGoogle Scholar
  93. Hu W, Chen S, Yang Z, Liu L, Wang H (2011) Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. J Phys Chem B 115(26):8453–8457. doi: 10.1021/jp204422v CrossRefGoogle Scholar
  94. Huang HC, Chen LC, Lin SB, Hsu CP, Chen HH (2010) In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Bioresour Technol 101(15):6084–6091. doi: 10.1016/j.biortech.2010.03.031 CrossRefGoogle Scholar
  95. Hutchens SA, Leon RV, O’Neill HM, Evans BR (2007) Statistical analysis of optimal culture conditions for Gluconacetobacter hansenii cellulose production. Lett Appl Microbiol 44(2):175–180. doi: 10.1111/j.1472-765X.2006.02055.x CrossRefGoogle Scholar
  96. Hwang JW, Yang YK, Hwang JK, Pyun YR, Kim YS (1999) Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture. J Biosci Bioeng 88(2):183–188CrossRefGoogle Scholar
  97. Ifuku S, Tsuji M, Morimoto M, Saimoto H, Yano H (2009) Synthesis of silver nanoparticles templated by TEMPO-mediated oxidized bacterial cellulose nanofibers. Biomacromolecules 10(9):2714–2717. doi: 10.1021/bm9006979 CrossRefGoogle Scholar
  98. Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35(2):261–270. doi: 10.1023/A:1004775229149 CrossRefGoogle Scholar
  99. Ishida T, Mitarai M, Sugano Y, Shoda M (2003) Role of water-soluble polysaccharides in bacterial cellulose production. Biotechnol Bioeng 83(4):474–478. doi: 10.1002/bit.10690 CrossRefGoogle Scholar
  100. Jagannath A, Kalaiselvan A, Manjunatha SS, Raju PS, Bawa AS (2008) The effect of pH, sucrose and ammonium sulphate concentrations on the production of bacterial cellulose (Nata-de-coco) by Acetobacter xylinum. World J Microbiol Biotechnol 24(11):2593–2599. doi: 10.1007/s11274-008-9781-8 CrossRefGoogle Scholar
  101. Jahan F, Kumar V, Rawat G, Saxena RK (2012) Production of microbial cellulose by a bacterium isolated from fruit. Appl Biochem Biotechnol 167(5):1157–1171. doi: 10.1007/s12010-012-9595-x CrossRefGoogle Scholar
  102. Jahn CE, Selimi DA, Barak JD, Charkowski AO (2011) The Dickeya dadantii biofilm matrix consists of cellulose nanofibres, and is an emergent property dependent upon the type III secretion system and the cellulose synthesis operon. Microbiology 157(10):2733–2744. doi: 10.1099/mic.0.051003-0 CrossRefGoogle Scholar
  103. Johnson DC, Neogi AN (1989) Sheeted products formed from reticulated microbial cellulose. Us Patent US4863565, 1989/09/05Google Scholar
  104. Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stabil 59(1–3):101–106. doi: 10.1016/S0141-3910(97)00197-3 CrossRefGoogle Scholar
  105. Jung JY, Khan T, Park JK, Chang HN (2007) Production of bacterial cellulose by Gluconacetobacter hansenii using a novel bioreactor equipped with a spin filter. Korean J Chem Eng 24(2):265–271. doi: 10.1007/s11814-007-5058-4 CrossRefGoogle Scholar
  106. Jung H-I, Lee OM, Jeong J-H, Jeon Y-D, Park K-H, Kim H-S, An W-G, Son H-J (2010a) Production and characterization of cellulose by Acetobacter sp. V6 using a cost-effective molasses–corn steep liquor medium. Appl Biochem Biotechnol 162(2):486–497. doi: 10.1007/s12010-009-8759-9 CrossRefGoogle Scholar
  107. Jung HI, Jeong JH, Lee OM, Park GT, Kim KK, Park HC, Lee SM, Kim YG, Son HJ (2010b) Influence of glycerol on production and structural-physical properties of cellulose from Acetobacter sp. V6 cultured in shake flasks. Bioresour Technol 101(10):3602–3608. doi: 10.1016/j.biortech.2009.12.111 CrossRefGoogle Scholar
  108. Juntaro J, Ummartyotin S, Sain M, Manuspiya H (2012) Bacterial cellulose reinforced polyurethane-based resin nanocomposite: a study of how ethanol and processing pressure affect physical, mechanical and dielectric properties. Carbohydr Polym 87(4):2464–2469. doi: 10.1016/j.carbpol.2011.11.020 CrossRefGoogle Scholar
  109. Kang YJ, Chun SJ, Lee SS, Kim BY, Kim JH, Chung H, Lee SY, Kim W (2012) All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels. ACS Nano 6(7):6400–6406. doi: 10.1021/nn301971r CrossRefGoogle Scholar
  110. Kawano S, Yasutake Y, Tajima K, Satoh Y, Yao M, Tanaka I, Munekata M (2005) Crystallization and preliminary crystallographic analysis of the cellulose biosynthesis-related protein CMCax from Acetobacter xylinum. Acta Crystallogr Sect F Struct Biol Crystall Commun 61(Pt 2):252–254. doi: 10.1107/S174430910500206X Google Scholar
  111. Khan T, Park J, Kwon J-H (2007) Functional biopolymers produced by biochemical technology considering applications in food engineering. Korean J Chem Eng 24(5):816–826. doi: 10.1007/s11814-007-0047-1 CrossRefGoogle Scholar
  112. Kim S, Li H, Oh I, Kee C, Kim M (2012) Effect of viscosity-inducing factors on oxygen transfer in production culture of bacterial cellulose. Korean J Chem Eng 29(6):792–797. doi: 10.1007/s11814-011-0245-8 CrossRefGoogle Scholar
  113. Kingkaew J, Jatupaiboon N, Sanchavanakit N, Pavasant P, Phisalaphong M (2010) Biocompatibility and growth of human keratinocytes and fibroblasts on biosynthesized cellulose-chitosan film. J Biomater Sci Polym Ed 21(8–9):1009–1021. doi: 10.1163/156856209X462763 CrossRefGoogle Scholar
  114. Kitamura N, Yamaya E. July 1987. Japanese patent application no. 87/168628Google Scholar
  115. Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26(9):1561–1603. doi: 10.1016/S0079-6700(01)00021-1 CrossRefGoogle Scholar
  116. Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem 50(24):5438–5466. doi: 10.1002/anie.201001273 CrossRefGoogle Scholar
  117. Kohno T, Fujioka Y, Goto T, Morimatsu S, Morita C, Nakano T, Sano K (1998) Contrast-enhancement for the image of human immunodeficiency virus from ultrathin section by immuno electron microscopy. J Virol Methods 72(2):137–143. doi: 10.1016/S0166-0934(98)00022-6 CrossRefGoogle Scholar
  118. Kongruang S (2008) Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Appl Biochem Biotechnol 148(1–3):245–256. doi: 10.1007/s12010-007-8119-6 CrossRefGoogle Scholar
  119. Kralisch D, Hessler N, Klemm D, Erdmann R, Schmidt W (2010) White biotechnology for cellulose manufacturing—The HoLiR concept. Biotechnol Bioeng 105(4):740–747. doi: 10.1002/bit.22579 Google Scholar
  120. Krystynowicz A, Czaja W, Wiktorowska-Jezierska A, Goncalves-Miskiewicz M, Turkiewicz M, Bielecki S (2002) Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol 29(4):189–195. doi: 10.1038/sj.jim.7000303 CrossRefGoogle Scholar
  121. Kuga S, Brown RM Jr (1988) Silver labeling of the reducing ends of bacterial cellulose. Carbohydr Res 180:345–350CrossRefGoogle Scholar
  122. Kuo CH, Lee CK (2009) Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohydr Polym 77(1):41–46. doi: 10.1016/j.carbpol.2008.12.003 CrossRefGoogle Scholar
  123. Kuo C-H, Lin P-J, Lee C-K (2010) Enzymatic saccharification of dissolution pretreated waste cellulosic fabrics for bacterial cellulose production by Gluconacetobacter xylinus. J Chem Technol Biot 85(10):1346–1352. doi: 10.1002/jctb.2439 CrossRefGoogle Scholar
  124. Kurosumi A, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr Polym 76(2):333–335. doi: 10.1016/j.carbpol.2008.11.009 CrossRefGoogle Scholar
  125. Laborie M-P, Brown E (2008) Method of in situ bioproduction and composition of bacterial cellulose nanocomposites. Us Patent US7968646, 2011/06/28Google Scholar
  126. Lai SW, Liao KF, Lai HC, Chou CY, Cheng KC, Lai YM (2009) The prevalence of gallbladder stones is higher among patients with chronic kidney disease in Taiwan. Medicine 88(1):46–51. doi: 10.1097/MD.0b013e318194183f CrossRefGoogle Scholar
  127. Lapuz MM, Gallardo EG, Palo MA (1967) The nata organism-cultural requirements, characteristics and identity. Philipp J Sci 96:91–108Google Scholar
  128. Legeza VI, Galenko-Yaroshevskii VP, Zinov’ev EV, Paramonov BA, Kreichman GS, Turkovskii II, Gumenyuk ES, Karnovich AG, Khripunov AK (2004) Effects of new wound dressings on healing of thermal burns of the skin in acute radiation disease. B Exp Biol Med+ 138(3):311–315. doi: 10.1007/Bf02694188 CrossRefGoogle Scholar
  129. Legnani C, Vilani C, Calil VL, Barud HS, Quirino WG, Achete CA, Ribeiro SJL, Cremona M (2008) Bacterial cellulose membrane as flexible substrate for organic light emitting devices. Thin Solid Films 517(3):1016–1020. doi: 10.1016/j.tsf.2008.06.011 CrossRefGoogle Scholar
  130. Li H, Kim S-J, Lee Y-W, Kee C, Oh I (2011) Determination of the stoichiometry and critical oxygen tension in the production culture of bacterial cellulose using saccharified food wastes. Korean J Chem Eng 28(12):2306–2311. doi: 10.1007/s11814-011-0111-8 CrossRefGoogle Scholar
  131. Lin SP, Cheng KC (2012) Bacterial cellulose production by Gluconacetobacter xylinum in the rotating PCS semi-continuous bioreactor and its materials property analysis. Paper presented at the 2012 mini symposium frontiers in biotechnology, National Taiwan University, TaipeiGoogle Scholar
  132. Lin FC, Brown RM Jr, Cooper JB, Delmer DP (1985) Synthesis of fibrils in vitro by a solubilized cellulose synthase from Acetobacter xylinum. Science 230(4727):822–825. doi: 10.1126/science.230.4727.822 CrossRefGoogle Scholar
  133. Lin SB, Hsu CP, Chen LC, Chen HH (2009) Adding enzymatically modified gelatin to enhance the rehydration abilities and mechanical properties of bacterial cellulose. Food Hydrocolloid 23(8):2195–2203. doi: 10.1016/j.foodhyd.2009.05.011 CrossRefGoogle Scholar
  134. Lu Z, Zhang Y, Chi Y, Xu N, Yao W, Sun B (2011) Effects of alcohols on bacterial cellulose production by Acetobacter xylinum 186. World J Microbiol Biotechnol 27(10):2281–2285. doi: 10.1007/s11274-011-0692-8 CrossRefGoogle Scholar
  135. Ludwig B (1989) Bergey’s manual of systematic bacteriology. In: Garrity GM (ed) Bergey’s manual of systematic bacteriology. Williams & Wilkins, New YorkGoogle Scholar
  136. Malm CJ, Risberg B, Bodin A, Bäckdahl H, Johansson BR, Gatenholm P, Jeppsson A (2012) Small calibre biosynthetic bacterial cellulose blood vessels: 13-months patency in a sheep model. Scand Cardiovasc J 46(1):57–62. doi: 10.3109/14017431.2011.623788 CrossRefGoogle Scholar
  137. Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72(1):43–51. doi: 10.1016/j.carbpol.2007.07.025 CrossRefGoogle Scholar
  138. Martinez Neto EE, Dolci JE (2010) Nasal septal perforation closure with bacterial cellulose in rabbits. Braz J Otorhinolaryngol 76(4):442–449CrossRefGoogle Scholar
  139. Martinez H, Brackmann C, Enejder A, Gatenholm P (2012) Mechanical stimulation of fibroblasts in micro-channeled bacterial cellulose scaffolds enhances production of oriented collagen fibers. J Biomed Mater Res, Part A 100(4):948–957. doi: 10.1002/jbm.a.34035 CrossRefGoogle Scholar
  140. Masaoka S, Ohe T, Sakota N (1993) Production of cellulose from glucose by Acetobacter xylinum. J Ferment Bioeng 75(1):18–22. doi: 10.1016/0922-338x(93)90171-4 CrossRefGoogle Scholar
  141. Matama T, Araujo R, Gubitz GM, Casal M, Cavaco-Paulo A (2010) Functionalization of cellulose acetate fibers with engineered cutinases. Biotechnol Prog 26(3):636–643. doi: 10.1002/btpr.364 CrossRefGoogle Scholar
  142. Matsuoka M, Tsuchida T, Matsushita K, Adachi O, Yoshinaga F (1996) A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp sucrofermentans. Biosci Biotech Bioch 60(4):575–579CrossRefGoogle Scholar
  143. Meftahi A, Khajavi R, Rashidi A, Sattari M, Yazdanshenas ME, Torabi M (2010) The effects of cotton gauze coating with microbial cellulose. Cellulose 17(1):199–204. doi: 10.1007/s10570-009-9377-y CrossRefGoogle Scholar
  144. Mendes PN, Rahal SC, Pereira-Junior OC, Fabris VE, Lenharo SL, de Lima-Neto JF, da Cruz Landim-Alvarenga F (2009) In vivo and in vitro evaluation of an Acetobacter xylinum synthesized microbial cellulose membrane intended for guided tissue repair. Acta Vet Scand 51:12. doi: 10.1186/1751-0147-51-12 CrossRefGoogle Scholar
  145. Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ (2009) Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J Appl Microbiol 107(2):576–583. doi: 10.1111/j.1365-2672.2009.04226.x CrossRefGoogle Scholar
  146. Mikkelsen D, Gidley MJ, Williams BA (2011) In vitro fermentation of bacterial cellulose composites as model dietary fibers. J Agric Food Chem 59(8):4025–4032. doi: 10.1021/jf104855e CrossRefGoogle Scholar
  147. Mohammadi H, Boughner D, Millon LE, Wan WK (2009) Design and simulation of a poly(vinyl alcohol)-bacterial cellulose nanocomposite mechanical aortic heart valve prosthesis. Proc Inst Mech Eng Part H 223(6):697–711CrossRefGoogle Scholar
  148. Moosavi-nasab M, Yousefi A (2011) Biotechnological production of cellulose by Gluconacetobacter xylinus from agricultural waste. Iran J Biotechnol 9(2):94–101Google Scholar
  149. Morgan JL, Strumillo J, Zimmer J (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493(7431):181–186. doi: 10.1038/nature11744 CrossRefGoogle Scholar
  150. Mormino R, Bungay H (2003) Composites of bacterial cellulose and paper made with a rotating disk bioreactor. Appl Microbiol Biotechnol 62(5–6):503–506. doi: 10.1007/s00253-003-1377-5 CrossRefGoogle Scholar
  151. Muangman P, Opasanon S, Suwanchot S, Thangthed O (2011) Efficiency of microbial cellulose dressing in partial-thickness burn wounds. J Am Col Certif Wound Spec 3(1):16–19. doi: 10.1016/j.jcws.2011.04.001 Google Scholar
  152. Nakai T, Nishiyama Y, Kuga S, Sugano Y, Shoda M (2002) ORF2 gene involves in the construction of high-order structure of bacterial cellulose. Biochem Biophys Res Commun 295(2):458–462CrossRefGoogle Scholar
  153. Nakai T, Sugano Y, Shoda M, Sakakibara H, Oiwa K, Tuzi S, Imai T, Sugiyama J, Takeuchi M, Yamauchi D, Mineyuki Y (2012) Formation of highly twisted ribbons in a carboxymethylcellulase gene-disrupted strain of a cellulose-producing bacterium. J Bacteriol. doi: 10.1128/JB.01473-12
  154. Naritomi T, Kouda T, Naritomi M, Yano H, Yoshinaga F (1997) Process for continuously preparing bacterial cellulose. Jp Patent US6132998, 2000/10/17Google Scholar
  155. Naritomi T, Kouda T, Yano H, Yoshinaga F (1998) Effect of ethanol on bacterial cellulose production from fructose in continuous culture. J Ferment Bioeng 85(6):598–603. doi: 10.1016/S0922-338x(98)80012-3 CrossRefGoogle Scholar
  156. Naritomi T, Kouda T, Yano H, Yoshinaga F, Shigematsu T, Moriumura S, Kida K (2002) Influence of broth exchange ratio on bacterial cellulose production by repeated-batch culture. Process Biochem 38(1):41–47. doi: 10.1016/S0032-9592(02)00046-8 CrossRefGoogle Scholar
  157. Nguyen VT, Gidley MJ, Dykes GA (2008) Potential of a nisin-containing bacterial cellulose film to inhibit Listeria monocytogenes on processed meats. Food Microbiol 25(3):471–478. doi: 10.1016/j.fm.2008.01.004 CrossRefGoogle Scholar
  158. Nguyen DN, Ton NMN, Le VVM (2009) Optimization of Saccharomyces cerevisiae immobilization in bacterial cellulose by ‘adsorption-Incubation’ method. Int Food Res J 16(1):59–64Google Scholar
  159. Nishi Y, Uryu M, Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S (1990) The structure and mechanical-properties of sheets prepared from bacterial cellulose. 2. Improvement of the mechanical-properties of sheets and their applicability to diaphragms of electroacoustic transducers. J Mater Sci 25(6):2997–3001. doi: 10.1007/Bf00584917 CrossRefGoogle Scholar
  160. Nogi M, Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20(10):1849–1852. doi: 10.1002/adma.200702559 CrossRefGoogle Scholar
  161. Noro N, Sugano Y, Shoda M (2004) Utilization of the buffering capacity of corn steep liquor in bacterial cellulose production by Acetobacter xylinum. Appl Microbiol Biotechnol 64(2):199–205. doi: 10.1007/s00253-003-1457-6 CrossRefGoogle Scholar
  162. Ohad I, Danon IO, Hestrin S (1962) Synthesis of cellulose by Acetobacter xylinum. V. Ultrastructure of polymer. J Cell Biol 12:31–46CrossRefGoogle Scholar
  163. Oikawa T, Morino T, Ameyama M (1995) Production of cellulose from D-arabitol by Acetobacter xylinum Ku-1. Biosci Biotech Bioch 59(8):1564–1565CrossRefGoogle Scholar
  164. Okiyama A, Motoki M, Yamanaka S (1992a) Bacterial cellulose II. Processing of the gelatinous cellulose for food materials. Food Hydrocol 6(5):479–487CrossRefGoogle Scholar
  165. Okiyama A, Shirae H, Kano H, Yamanaka S (1992b) Bacterial cellulose I. Two-stage fermentation process for cellulose production by Acetobacter aceti. Food Hydrocol 6(5):471–477CrossRefGoogle Scholar
  166. Okiyama A, Motoki M, Yamanaka S (1993) Bacterial cellulose IV. Application to processed foods. Food Hydrocol 6(6):503–511CrossRefGoogle Scholar
  167. Okuda K (2002) Structure and phylogeny of cell coverings. J Plant Res 115(4):283–288. doi: 10.1007/s10265-002-0034-x CrossRefGoogle Scholar
  168. Park JK, Jung JY, Park YH (2003) Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnol Lett 25(24):2055–2059CrossRefGoogle Scholar
  169. Park JK, Khan T, Jung JY (2009) Bacterial cellulose. Handbook of hydrocolloids Cambridge, UKGoogle Scholar
  170. Pertile R, Moreira S, Andrade F, Domingues L, Gama M (2012) Bacterial cellulose modified using recombinant proteins to improve neuronal and mesenchymal cell adhesion. Biotechnol Progr 28(2):526–532. doi: 10.1002/Btpr.1501 CrossRefGoogle Scholar
  171. Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91(5):1277–1286. doi: 10.1007/s00253-011-3432-y CrossRefGoogle Scholar
  172. Portal O, Clark WA, Levinson DJ (2009) Microbial cellulose wound dressings in the treatment of nonhealing lower extremity ulcers. Wounds 21:1–3Google Scholar
  173. Pourramezan G, Roayaei A, Qezelbash Q (2009) Optimization of culture conditions for bacterial cellulose production by Acetobacter sp. 4B-2. Biotechnology 8(1):150–154CrossRefGoogle Scholar
  174. Putra A, Kakugo A, Furukawa H, Gong JP, Osada Y (2008) Tubular bacterial cellulose gel with oriented fibrils on the curved surface. Polymer 49(7):1885–1891. doi: 10.1016/j.polymer.2008.02.022 CrossRefGoogle Scholar
  175. Quero F, Nogi M, Yano H, Abdulsalami K, Holmes SM, Sakakini BH, Eichhorn SJ (2010) Optimization of the mechanical performance of bacterial cellulose/poly(l-lactic) acid composites. Acs Appl Mater Inter 2(1):321–330. doi: 10.1021/Am900817f CrossRefGoogle Scholar
  176. Rezaee A, Godini H, Bakhtou H (2008a) Microbial cellulose as support material for the immobilization of denitrifying bacteria. Environ Eng Manag J 7(5):589Google Scholar
  177. Rezaee A, Godini H, Dehestani S, Reza Yazdanbakhsh A, Mosavi G, Kazemnejad A (2008b) Biological denitrification by Pseudomonas stutzeri immobilized on microbial cellulose. World J Microbiol Biotechnol 24(11):2397–2402. doi: 10.1007/s11274-008-9753-z CrossRefGoogle Scholar
  178. Ross P, Aloni Y, Weinhouse C, Michaeli D, Weinberger-Ohana P, Meyer R, Benziman M (1985) An unusual guanyl oligonucleotide regulates cellulose synthesis in Acetobacter xylinum. FEBS Lett 186(2):191–196CrossRefGoogle Scholar
  179. Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55(1):35–58Google Scholar
  180. Ruka DR, Simon GP, Dean KM (2012) Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohydr Polym 89(2):613–622. doi: 10.1016/j.carbpol.2012.03.059 CrossRefGoogle Scholar
  181. Sanchavanakit N, Sangrungraungroj W, Kaomongkolgit R, Banaprasert T, Pavasant P, Phisalaphong M (2006) Growth of human keratinocytes and fibroblasts on bacterial cellulose film. Biotechnol Progr 22(4):1194–1199. doi: 10.1021/Bp060035o CrossRefGoogle Scholar
  182. Saska S, Barud HS, Gaspar AM, Marchetto R, Ribeiro SJ, Messaddeq Y (2011) Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. Int J Biomater 2011:175362. doi: 10.1155/2011/175362 Google Scholar
  183. Saska S, Scarel-Caminaga RM, Teixeira LN, Franchi LP, Dos Santos RA, Gaspar AM, de Oliveira PT, Rosa AL, Takahashi CS, Messaddeq Y, Ribeiro SJ, Marchetto R (2012) Characterization and in vitro evaluation of bacterial cellulose membranes functionalized with osteogenic growth peptide for bone tissue engineering. J Mater Sci Mater Med 23(9):2253–2266. doi: 10.1007/s10856-012-4676-5 CrossRefGoogle Scholar
  184. Saxena IM, Kudlicka K, Okuda K, Brown RM Jr (1994) Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization. J Bacteriol 176(18):5735–5752Google Scholar
  185. Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J Gen Microbiol 11:123–129CrossRefGoogle Scholar
  186. Schumann D, Wippermann J, Klemm D, Kramer F, Koth D, Kosmehl H, Wahlers T, Salehi-Gelani S (2009) Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes. Cellulose 16(5):877–885. doi: 10.1007/s10570-008-9264-y CrossRefGoogle Scholar
  187. Seo HN, Lee WJ, Hwang TS, Park DH (2009) Electricity generation coupled with wastewater treatment using a microbial fuel cell composed of a modified cathode with a ceramic membrane and cellulose acetate film. J Microbiol Biotechn 19(9):1019–1027. doi: 10.4014/Jmb.0812.663 CrossRefGoogle Scholar
  188. Serafica GC (1997) Production of bacterial cellulose using a rotating disk film bioreactor by Acetobacter xylinum. Troy, NYGoogle Scholar
  189. Serafica G, Bungay H (1996) Production of bacterial cellulose using a rotating disk film bioreactor. Abstr Pap Am Chem S 211:148-BIOTGoogle Scholar
  190. Serafica G, Mormino R, Bungay H (2002) Inclusion of solid particles in bacterial cellulose. Appl Microbiol Biotechnol 58(6):756–760. doi: 10.1007/s00253-002-0978-8 CrossRefGoogle Scholar
  191. Shah J, Brown RM (2005) Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotechnol 66(4):352–355. doi: 10.1007/s00253-004-1756-6 CrossRefGoogle Scholar
  192. Shah N, Ha J, Park J (2010) Effect of reactor surface on production of bacterial cellulose and water soluble oligosaccharides by Gluconacetobacter hansenii PJK. Biotechnol Bioproc E 15(1):110–118. doi: 10.1007/s12257-009-3064-6 CrossRefGoogle Scholar
  193. Shezad O, Khan S, Khan T, Park JK (2010) Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydr Polym 82(1):173–180. doi: 10.1016/j.carbpol.2010.04.052 CrossRefGoogle Scholar
  194. Shi Q, Li Y, Sun J, Zhang H, Chen L, Chen B, Yang H, Wang Z (2012) The osteogenesis of bacterial cellulose scaffold loaded with bone morphogenetic protein-2. Biomaterials 33(28):6644–6649. doi: 10.1016/j.biomaterials.2012.05.071 CrossRefGoogle Scholar
  195. Shibazaki H, Kuga S, Onabe F (1994) Jpn TAPPI J 48:1621–1630CrossRefGoogle Scholar
  196. Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioproc E 10(1):1–8. doi: 10.1007/Bf02931175 CrossRefGoogle Scholar
  197. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494. doi: 10.1007/s10570-010-9405-y CrossRefGoogle Scholar
  198. Sneath PHA (1958) International code of nomenclature of bacteria and viruses. ASM Press, HerndonGoogle Scholar
  199. Solano C, Garcia B, Valle J, Berasain C, Ghigo JM, Gamazo C, Lasa I (2002) Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol 43(3):793–808CrossRefGoogle Scholar
  200. Solway DR, Clark WA, Levinson DJ (2011) A parallel open-label trial to evaluate microbial cellulose wound dressing in the treatment of diabetic foot ulcers. Int Wound J 8(1):69–73. doi: 10.1111/j.1742-481X.2010.00750.x CrossRefGoogle Scholar
  201. Song H-J, Li H, Seo J-H, Kim M-J, Kim S-J (2009) Pilot-scale production of bacterial cellulose by a spherical type bubble column bioreactor using saccharified food wastes. Korean J Chem Eng 26(1):141–146. doi: 10.1007/s11814-009-0022-0 CrossRefGoogle Scholar
  202. Songsurang K, Pakdeebumrung J, Praphairaksit N, Muangsin N (2011) Sustained release of amoxicillin from ethyl cellulose-coated amoxicillin/chitosan-cyclodextrin-based tablets. AAPS PharmSciTech 12(1):35–45. doi: 10.1208/s12249-010-9555-0 CrossRefGoogle Scholar
  203. Standal R, Iversen TG, Coucheron DH, Fjaervik E, Blatny JM, Valla S (1994) A new gene required for cellulose production and a gene encoding cellulolytic activity in Acetobacter xylinum are colocalized with the bcs operon. J Bacteriol 176(3):665–672Google Scholar
  204. Stanislaw B, Halina K, Alina K, Katarzyna K, Marek Ko, Manu de G (2012) Wound dressings and cosmetic materials from bacterial nanocellulose. In: Bacterial nanocellulose. Perspectives in nanotechnology. CRC Press, New York, pp 157–174. doi: 10.1201/b12936-910.1201/b12936-9
  205. Stoica-Guzun A, Stroescu M, Jinga S, Jipa I, Dobre T, Dobre L (2012) Ultrasound influence upon calcium carbonate precipitation on bacterial cellulose membranes. Ultrason Sonochem 19(4):909–915. doi: 10.1016/j.ultsonch.2011.12.002 CrossRefGoogle Scholar
  206. Sun D, Yang J, Wang X (2010) Bacterial cellulose/TiO2 hybrid nanofibers prepared by the surface hydrolysis method with molecular precision. Nanoscale 2(2):287–292CrossRefGoogle Scholar
  207. Sunagawa N, Fujiwara T, Yoda T, Kawano S, Satoh Y, Yao M, Tajima K, Dairi T (2013) Cellulose complementing factor (Ccp) is a new member of the cellulose synthase complex (terminal complex) in Acetobacter xylinum. J Biosci Bioeng. doi: 10.1016/j.jbiosc.2012.12.021
  208. Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26(4):419–431. doi: 10.1016/j.biomaterials.2004.02.049 CrossRefGoogle Scholar
  209. Swissa M, Aloni Y, Weinhouse H, Benizman M (1980) Intermediatry steps in Acetobacter xylinum cellulose synthesis: studies with whole cells and cell-free preparations of the wild type and a celluloseless mutant. J Bacteriol 143(3):1142–1150Google Scholar
  210. Szczygielski K, Rapiejko P, Wojdas A, Jurkiewicz D (2010) Use of CMC foam sinus dressing in FESS. Eur Arch Otorhinolaryngol 267(4):537–540. doi: 10.1007/s00405-009-1117-2 CrossRefGoogle Scholar
  211. Takai M (1994) Bacterial cellulose composites. In: Gilbert RD (ed) Cellulose polymer blends composites. Hanser, Munich, pp 233–240Google Scholar
  212. Tarr HLA, Hibbert H (1931) Polysacharide synthesis by the action of Acetobacter xylinum on carbohydrates and related compounds. Canad J Res 4:372–388CrossRefGoogle Scholar
  213. Ton NMN, Le VVM (2011a) Application of immobilized yeast in bacterial cellulose to the repeated batch fermentation in wine-making. Int Food Res J 18(3):983–987Google Scholar
  214. Ton NMN, Le VVM (2011b) Influence of initial pH and sulfur dioxide content in must on wine fermentation by immobilized yeast in bacterial cellulose. Int Food Res J 17:743–749Google Scholar
  215. Toyosaki H, Naritomi T, Seto A, Matsuoka M, Tsuchida T, Yoshinaga F (1995) Screening of bacterial cellulose-producing acetobacter strains suitable for agitated culture. Biosci Biotech Bioch 59(8):1498–1502CrossRefGoogle Scholar
  216. Trovatti E, Oliveira L, Freire CSR, Silvestre AJD, Pascoal Neto C, Cruz Pinto JJC, Gandini A (2010) Novel bacterial cellulose–acrylic resin nanocomposites. Compos Sci Technol 70(7):1148–1153. doi: 10.1016/j.compscitech.2010.02.031 CrossRefGoogle Scholar
  217. Trovatti E, Freire CS, Pinto PC, Almeida IF, Costa P, Silvestre AJ, Neto CP, Rosado C (2012) Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: in vitro diffusion studies. Int J Pharm 435(1):83–87. doi: 10.1016/j.ijpharm.2012.01.002 CrossRefGoogle Scholar
  218. Tse ML, Chung KM, Dong L, Thomas BK, Fu LB, Cheng KC, Lu C, Tam HY (2010) Observation of symmetrical reflection sidebands in a silica suspended-core fiber Bragg grating. Opt Express 18(16):17373–17381. doi: 10.1364/OE.18.017373 CrossRefGoogle Scholar
  219. Ummartyotin S, Juntaro J, Sain M, Manuspiya H (2012) Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. Ind Crops Prod 35(1):92–97. doi: 10.1016/j.indcrop.2011.06.025 CrossRefGoogle Scholar
  220. Valla S, Kjosbakken J (1981) Isolation and characterization of a new extracellular polysaccharide from a cellulose-negative strain of Acetobacter xylinum. Can J Microbiol 27(6):599–603CrossRefGoogle Scholar
  221. Valla S, Ertesvag H, Tonouchi N, Fjaervik E (2009) Microbial production of biopolymers and polymer precursors: applications and perspectives. Caister Acedemic Press, NorwichGoogle Scholar
  222. Vitta S, Drillon M, Derory A (2010) Magnetically responsive bacterial cellulose: synthesis and magnetic studies. J Appl Phys 108(5):053905–053907. doi: 10.1063/1.3476058 CrossRefGoogle Scholar
  223. Wang W, Zhang TJ, Zhang DW, Li HY, Ma YR, Qi LM, Zhou YL, Zhang XX (2011) Amperometric hydrogen peroxide biosensor based on the immobilization of heme proteins on gold nanoparticles-bacteria cellulose nanofibers nanocomposite. Talanta 84(1):71–77. doi: 10.1016/j.talanta.2010.12.015 CrossRefGoogle Scholar
  224. Wang J, Wan Y, Huang Y (2012) Immobilisation of heparin on bacterial cellulose-chitosan nano-fibres surfaces via the cross-linking technique. IET Nanobiotechnol 6(2):52–57. doi: 10.1049/iet-nbt.2011.0038 CrossRefGoogle Scholar
  225. Watanabe K, Eto Y, Takano S, Nakamori S, Shibai H, Yamanaka S (1993) A new bacterial cellulose substrate for mammalian cell culture. A new bacterial cellulose substrate. Cytotechnology 13(2):107–114CrossRefGoogle Scholar
  226. Wei B, Yang G, Hong F (2011) Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr Polym 84(1):533–538. doi: 10.1016/j.carbpol.2010.12.017 CrossRefGoogle Scholar
  227. White AR, Brown RM (1981) Enzymatic hydrolysis of cellulose: visual characterization of the process. Proc Natl Acad Sci USA 78(2):1047–1051CrossRefGoogle Scholar
  228. White DG, Brown RM Jr (1989) Prospects for the commercialization of the biosynthesis of microbial cellulose. In: Schuerech C (ed) Cellulose and wood-chemistry and technology. Wiley, New York, p 573Google Scholar
  229. Williams WS, Cannon RE (1989) Alternative environmental roles for cellulose produced by Acetobacter xylinum. Appl Environ Microbiol 55(10):2448–2452Google Scholar
  230. Winter GD (1962) Formation of scab and rate of epithelization of superficial wounds in skin of young domestic pig. Nature 193(4812):293. doi: 10.1038/193293a0 CrossRefGoogle Scholar
  231. Winter HT, Cerclier C, Delorme N, Bizot H, Quemener B, Cathala B (2010) Improved colloidal stability of bacterial cellulose nanocrystal suspensions for the elaboration of spin-coated cellulose-based model surfaces. Biomacromolecules. doi: 10.1021/bm100953f
  232. Wippermann J, Schumann D, Klemm D, Kosmehl H, Salehi-Gelani S, Wahlers T (2009) Preliminary results of small arterial substitute performed with a new cylindrical biomaterial composed of bacterial cellulose. Eur J Vasc Endovasc Surg 37(5):592–596. doi: 10.1016/j.ejvs.2009.01.007 CrossRefGoogle Scholar
  233. Wong HC, Fear AL, Calhoon RD, Eichinger GH, Mayer R, Amikam D, Benziman M, Gelfand DH, Meade JH, Emerick AW et al (1990) Genetic organization of the cellulose synthase operon in Acetobacter xylinum. Proc Natl Acad Sci USA 87(20):8130–8134CrossRefGoogle Scholar
  234. Wu SC, Lia YK (2008) Application of bacterial cellulose pellets in enzyme immobilization. J Mol Catal B Enzym 54(3–4):103–108. doi: 10.1016/j.molcatb.2007.12.021 CrossRefGoogle Scholar
  235. Wu JM, Liu RH (2012) Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr Polym 90(1):116–121. doi: 10.1016/j.carbpol.2012.05.003 CrossRefGoogle Scholar
  236. Wu SQ, Li MY, Fang BS, Tong H (2012) Reinforcement of vulnerable historic silk fabrics with bacterial cellulose film and its light aging behavior. Carbohydr Polym 88(2):496–501. doi: 10.1016/j.carbpol.2011.12.033 CrossRefGoogle Scholar
  237. Yamanaka S, Watanabe K (1994) Applications of bacterial cellulose in cellulosic polymers. In: Gilbert R (ed) Hanser Publishers Inc, CincinnatiGoogle Scholar
  238. Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) The structure and mechanical-properties of sheets prepared from bacterial cellulose. J Mater Sci 24(9):3141–3145. doi: 10.1007/Bf01139032 CrossRefGoogle Scholar
  239. Yan Z, Chen S, Wang H, Wang B, Jiang J (2008) Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture. Carbohydr Polym 74(3):659–665. doi: 10.1016/j.carbpol.2008.04.028 CrossRefGoogle Scholar
  240. Yang J, Yu J, Fan J, Sun D, Tang W, Yang X (2011) Biotemplated preparation of CdS nanoparticles/bacterial cellulose hybrid nanofibers for photocatalysis application. J Hazard Mater 189(1–2):377–383. doi: 10.1016/j.jhazmat.2011.02.048 CrossRefGoogle Scholar
  241. Yang G, Xie J, Deng Y, Bian Y, Hong F (2012a) Hydrothermal synthesis of bacterial cellulose/AgNPs composite: a “green” route for antibacterial application. Carbohydr Polym 87(4):2482–2487. doi: 10.1016/j.carbpol.2011.11.017 CrossRefGoogle Scholar
  242. Yang G, Xie J, Hong F, Cao Z, Yang X (2012b) Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: effect of fermentation carbon sources of bacterial cellulose. Carbohydr Polym 87(1):839–845. doi: 10.1016/j.carbpol.2011.08.079 CrossRefGoogle Scholar
  243. Yang Z, Chen S, Hu W, Yin N, Zhang W, Xiang C, Wang H (2012c) Flexible luminescent CdSe/bacterial cellulose nanocomoposite membranes. Carbohydr Polym 88(1):173–178. doi: 10.1016/j.carbpol.2011.11.080 CrossRefGoogle Scholar
  244. Yao W, Wu X, Zhu J, Sun B, Zhang YY, Miller C (2011) Bacterial cellulose membrane—a new support carrier for yeast immobilization for ethanol fermentation. Process Biochem 46(10):2054–2058. doi: 10.1016/j.procbio.2011.07.006 CrossRefGoogle Scholar
  245. Yoon SH, Jin HJ, Kook MC, Pyun YR (2006) Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules 7(4):1280–1284. doi: 10.1021/bm050597g CrossRefGoogle Scholar
  246. Yoshino T, Asakura T, Toda K (1996) Cellulose production by Acetobacter pasteurianus on silicone membrane. J Ferment Bioeng 81(1):32–36. doi: 10.1016/0922-338x(96)83116-3 CrossRefGoogle Scholar
  247. Yu HC, Chen LJ, Cheng KC, Li YX, Yeh CH, Cheng JT (2012) Silymarin inhibits cervical cancer cell through an increase of phosphatase and tensin homolog. Phytother Res 26(5):709–715. doi: 10.1002/ptr.3618 CrossRefGoogle Scholar
  248. Zaborowska M, Bodin A, Bäckdahl H, Popp J, Goldstein A, Gatenholm P (2010) Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater 6(7):2540–2547. doi: 10.1016/j.actbio.2010.01.004 CrossRefGoogle Scholar
  249. Zahedmanesh H, Mackle JN, Sellborn A, Drotz K, Bodin A, Gatenholm P, Lally C (2011) Bacterial cellulose as a potential vascular graft: mechanical characterization and constitutive model development. J Biomed Mater Res B 97B(1):105–113. doi: 10.1002/Jbm.B.31791 CrossRefGoogle Scholar
  250. Zeng X, Small DP, Wan W (2011) Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohydr Polym 85(3):506–513. doi: 10.1016/j.carbpol.2011.02.034 CrossRefGoogle Scholar
  251. Zhang W, Chen S, Hu W, Zhou B, Yang Z, Yin N, Wang H (2011) Facile fabrication of flexible magnetic nanohybrid membrane with amphiphobic surface based on bacterial cellulose. Carbohydr Polym 86(4):1760–1767. doi: 10.1016/j.carbpol.2011.07.015 CrossRefGoogle Scholar
  252. Zhijiang C, Guang Y (2011) Optical nanocomposites prepared by incorporating bacterial cellulose nanofibrils into poly(3-hydroxybutyrate). Mater Lett 65(2):182–184. doi: 10.1016/j.matlet.2010.09.055 CrossRefGoogle Scholar
  253. Zhou LL, Sun DP, Hu LY, Li YW, Yang JZ (2007a) Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J Ind Microbiol Biotechnol 34(7):483–489. doi: 10.1007/s10295-007-0218-4 CrossRefGoogle Scholar
  254. Zhou WB, Zhu DW, Tan LF, Liao SJ, Hu ZH, Hamilton D (2007b) Extraction and retrieval of potassium from water hyacinth (Eichhornia crassipes). Bioresour Technol 98(1):226–231. doi: 10.1016/j.biortech.2005.11.011 CrossRefGoogle Scholar
  255. Zimmermann KA, LeBlanc JM, Sheets KT, Fox RW, Gatenholm P (2011) Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater Sci Eng, C 31(1):43–49. doi: 10.1016/j.msec.2009.10.007 CrossRefGoogle Scholar
  256. Zinnanti WJ, Lazovic J, Griffin K, Skvorak KJ, Paul HS, Homanics GE, Bewley MC, Cheng KC, Lanoue KF, Flanagan JM (2009) Dual mechanism of brain injury and novel treatment strategy in maple syrup urine disease. Brain 132(Pt 4):903–918. doi: 10.1093/brain/awp024 Google Scholar
  257. Zogaj X, Nimtz M, Rohde M, Bokranz W, Romling U (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39(6):1452–1463CrossRefGoogle Scholar
  258. Zuo KW, Cheng HP, Wu SC, Wu WT (2006) A hybrid model combining hydrodynamic and biological effects for production of bacterial cellulose with a pilot scale airlift reactor. Biochem Eng J 29(1–2):81–90. doi: 10.1016/j.bej.2005.02.020 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Shin-Ping Lin
    • 1
  • Iris Loira Calvar
    • 2
  • Jeffrey M. Catchmark
    • 3
    • 4
  • Je-Ruei Liu
    • 1
  • Ali Demirci
    • 3
  • Kuan-Chen Cheng
    • 1
    • 5
  1. 1.Institute of BiotechnologyNational Taiwan UniversityTaipeiTaiwan
  2. 2.Food Technology Department, Higher Technical School of Agricultural EngineeringTechnical University of MadridMadridSpain
  3. 3.Department of Agricultural and Biological EngineeringThe Pennsylvania State UniversityUniversity ParkUSA
  4. 4.Center for NanoCellulosicsThe Pennsylvania State UniversityUniversity ParkUSA
  5. 5.Graduate Institute of Food Science TechnologyNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations