, Volume 20, Issue 4, pp 1613–1627 | Cite as

The impact of cellulose structure on binding interactions with hemicellulose and pectin

  • Jin Gu
  • Jeffrey M. Catchmark
Original Paper


Four cellulose substrates including highly crystalline cellulose nanowhiskers (CNWs) from Gluconacetobacter xylinus (cellulose Iα) or cotton (cellulose Iβ) and amorphous cellulose derived from CNWs (phosphoric acid swollen cellulose nanowhiskers, PASCNWs) were used to explore the interaction between cellulose and well-defined xyloglucan, xylan, arabinogalactan and pectin. The binding behavior was characterized by adsorption isotherm and Langmuir models. The maximum adsorption and the binding constant of xyloglucan, xylan and pectin to any CNWs were always higher than to PASCNWs derived from the same source. The binding affinity of xyloglucan, xylan and pectin to G. xylinus cellulose was generally higher than to cotton cellulose, showing that binding interactions depended on the biological origin of cellulose and associated differences in its structure. The surface area, porosity, crystal plane and degree of order of cellulose substrate may all impact the interactions.


Model cellulose substrates Xyloglucan Xylan Arabinogalactan Pectin Nitrogen adsorption 



This research was supported as part of The Center for LignoCellulose Structure and Formation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science under Award Number DE-SC0001090. XPS, SEM and XRD techniques were supported by the Pennsylvania State University Materials Research Institute Nanofabrication Lab and the National Science Foundation Cooperative Agreement No. ECS-0335765. SEC experimental data was supported in part by Department of Energy-funded (DE-FG02-93ER-20097) Center for Plant and Microbial Complex Carbohydrate. The authors thank Ana Bulter at PSU for assistance of zeta potential measurements.

Supplementary material

10570_2013_9965_MOESM1_ESM.doc (436 kb)
Supplementary material 1 (DOC 437 kb)


  1. Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A (2010) Principles of cell wall architecture and assembly. In: Plant Cell Walls. Garland Science, Taylor & Francis Group, New York, pp 227-272Google Scholar
  2. Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloid Surface A 142(1):75–82CrossRefGoogle Scholar
  3. Bacic A, Harris P, Stone B (1988) Structure and function of plant cell walls. In: Stumpf P, Conn E, Preiss J (eds) The Biochemistry of Plants: A Comprehenive Treastise, vol 14. Academic Press, New York, pp 297–334CrossRefGoogle Scholar
  4. Bodin A, Ahrenstedt L, Fink H, Brumer H, Risberg B, Gatenholm P (2007) Modification of nanocellulose with a xyloglucan-RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineering. Biomacromolecules 8(12):3697–3704CrossRefGoogle Scholar
  5. Carpita NC, Gibeaut DM (1993) Structural models of primary-cell walls in flowering plants—consistency of molecular-structure with the physical-properties of the walls during growth. Plant J 3(1):1–30CrossRefGoogle Scholar
  6. Chambat G, Karmous M, Costes M, Picard M, Joseleau JP (2005) Variation of xyloglucan substitution pattern affects the sorption on celluloses with different degrees of crystallinity. Cellulose 12(2):117–125CrossRefGoogle Scholar
  7. Chanliaud E, Gidley MJ (1999) In vitro synthesis and properties of pectin/Acetobacter xylinus cellulose composites. Plant J 20(1):25–35CrossRefGoogle Scholar
  8. Currier NL, Lejtenyi D, Miller SC (2003) Effect over time of in vivo administration of the polysaccharide arabinogalactan on immune and hemopoietic cell lineages in murine spleen and bone marrow. Phytomedicine 10(2–3):145–153CrossRefGoogle Scholar
  9. Dong XM, Kimura T, Revol JF, Gray DG (1996) Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12(8):2076–2082CrossRefGoogle Scholar
  10. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356CrossRefGoogle Scholar
  11. Ebringerova A, Heinze T (2000) Xylan and xylan derivatives - biopolymers with valuable properties, 1—Naturally occurring xylans structures, procedures and properties. Macromol Rapid Comm 21(9):542–556CrossRefGoogle Scholar
  12. Ebringerová A, Hromádková Z, Heinze T (2005) Hemicellulose. In: Heinze T (ed) Polysaccharides I. Advances in polymer science, vol 186. Springer, Berlin/Heidelberg, pp 1–67CrossRefGoogle Scholar
  13. Eronen P, Osterberg M, Heikkinen S, Tenkanen M, Laine J (2011) Interactions of structurally different hemicelluloses with nanofibrillar cellulose. Carbohyd Polym 86(3):1281–1290CrossRefGoogle Scholar
  14. Freixo MR, de Pinho MN (2002) Enzymatic hydrolysis of beechwood xylan in a membrane reactor. Desalination 149(1–3):237–242CrossRefGoogle Scholar
  15. Fry SC, York WS, Albersheim P, Darvill A, Hayashi T, Joseleau JP, Kato Y, Lorences EP, Maclachlan GA, Mcneil M, Mort AJ, Reid JSG, Seitz HU, Selvendran RR, Voragen AGJ, White AR (1993) An unambiguous nomenclature for xyloglucan-derived oligosaccharides. Physiol Plantarum 89(1):1–3CrossRefGoogle Scholar
  16. Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10(1–2):27–30CrossRefGoogle Scholar
  17. Gu J, Catchmark JM (2012) Impact of hemicelluloses and pectin on sphere-like bacterial cellulose assembly. Carbohyd Polym 88(2):547–557CrossRefGoogle Scholar
  18. Gu J, Catchmark JM, Kaiser EQ, Archibald DD (2013) Quantification of cellulose nanowhiskers sulfate esterification levels. Carbohyd Polym 92(2):1809–1816CrossRefGoogle Scholar
  19. Guo J, Catchmark JM (2012) Surface area and porosity of acid hydrolyzed cellulose nanowhiskers and cellulose produced by Gluconacetobacter xylinus. Carbohyd Polym 87(2):1026–1037CrossRefGoogle Scholar
  20. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500CrossRefGoogle Scholar
  21. Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2010) Cellulose crystallinity—a key predictor of the enzymatic hydrolysis rate. FEBS J 277(6):1571–1582CrossRefGoogle Scholar
  22. Hanus J, Mazeau K (2006) The xyloglucan-cellulose assembly at the atomic scale. Biopolymers 82(1):59–73CrossRefGoogle Scholar
  23. Hayashi T, Marsden MPF, Delmer DP (1987) Pea xyloglucan and cellulose.5. Xyloglucan-cellulose interactions invitro and invivo. Plant Physiol 83(2):384–389CrossRefGoogle Scholar
  24. Hayashi T, Ogawa K, Mitsuishi Y (1994) Characterization of the adsorption of xyloglucan to cellulose. Plant Cell Physiol 35(8):1199–1205Google Scholar
  25. Herrington TM, Petzold JC (1992) An Investigation into the Nature of Charge on the Surface of Papermaking Woodpulps 1. Charge Ph Isotherms. Colloid Surface 64(2):97–108CrossRefGoogle Scholar
  26. Hu Y, Catchmark JM (2010) Formation and characterization of spherelike bacterial cellulose particles produced by acetobacter xylinum JCM 9730 strain. Biomacromolecules 11(7):1727–1734CrossRefGoogle Scholar
  27. Iwai H, Ishii T, Satoh S (2001) Absence of arabinan in the side chains of the pectic polysaccharides strongly associated with cell walls of Nicotiana plumbaginifolla non-organogenic callus with loosely attached constituent cells. Planta 213(6):907–915CrossRefGoogle Scholar
  28. Iwata T, Indrarti L, Azuma JI (1998) Affinity of hemicellulose for cellulose produced by Acetobacter xylinum. Cellulose 5(3):215–228CrossRefGoogle Scholar
  29. Kabel MA, van den Borne H, Vincken JP, Voragen AGJ, Schols HA (2007) Structural differences of xylans affect their interaction with cellulose. Carbohyd Polym 69(1):94–105CrossRefGoogle Scholar
  30. Kittle JD, Du XS, Jiang F, Qian C, Heinze T, Roman M, Esker AR (2011) Equilibrium water contents of cellulose films determined via solvent exchange and quartz crystal microbalance with dissipation monitoring. Biomacromolecules 12(8):2881–2887CrossRefGoogle Scholar
  31. Kohnke T, Ostlund A, Brelid H (2011) Adsorption of arabinoxylan on cellulosic surfaces: influence of degree of substitution and substitution pattern on adsorption characteristics. Biomacromolecules 12(7):2633–2641CrossRefGoogle Scholar
  32. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403CrossRefGoogle Scholar
  33. Levy S, York WS, Stuike-Prill R, Meyer B, Staehelin LA (1991) Simulations of the static and dynamic molecular conformations of xyloglucan. The role of the fucosylated sidechain in surface-specific sidechain folding. Plant J 1(2):195–215CrossRefGoogle Scholar
  34. Liang XH, Gu LZ, Ding EY (1993) Recrystallization behavior of cellulose and lignocellulose from Pinus-Massoniana. Wood Sci Technol 27(6):461–467CrossRefGoogle Scholar
  35. Lima DU, Loh W, Buckeridge MS (2004) Xyloglucan-cellulose interaction depends on the sidechains and molecular weight of xyloglucan. Plant Physiol Bioch 42(5):389–394CrossRefGoogle Scholar
  36. Linder A, Bergman R, Bodin A, Gatenholm P (2003) Mechanism of assembly of xylan onto cellulose surfaces. Langmuir 19(12):5072–5077CrossRefGoogle Scholar
  37. Lopez M, Bizot H, Chambat G, Marais MF, Zykwinska A, Ralet MC, Driguez H, Buleon A (2010) Enthalpic studies of xyloglucan-cellulose interactions. Biomacromolecules 11(6):1417–1428CrossRefGoogle Scholar
  38. Lowell S, Shields JE, Thomas MA, Thommes M (2004) Characterization of porous solids and powders: Surface area, pore size and density. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  39. Mazeau K, Charlier L (2012) The molecular basis of the adsorption of xylans on cellulose surface. Cellulose 19(2):337–349CrossRefGoogle Scholar
  40. Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11(3):266–277CrossRefGoogle Scholar
  41. Morris S, Hanna S, Miles MJ (2004) The self-assembly of plant cell wall components by single-molecule force spectroscopy and Monte Carlo modelling. Nanotechnology 15(9):1296–1301CrossRefGoogle Scholar
  42. Nordgren N, Eklof J, Zhou Q, Brumer H, Rutland MW (2008) Top-down grafting of xyloglucan to gold monitored by QCM-D and AFM: enzymatic activity and interactions with cellulose. Biomacromolecules 9(3):942–948CrossRefGoogle Scholar
  43. Oechslin R, Lutz MV, Amado R (2003) Pectic substances isolated from apple cellulosic residue: structural characterisation of a new type of rhamnogalacturonan I. Carbohyd Polym 51(3):301–310CrossRefGoogle Scholar
  44. Paananen A, Österberg M, Rutland M, Tammelin T, Saarinen T, Tappura K, Stenius P (2003) Interaction between cellulose and xylan: an atomic force microscope and quartz crystal microbalance study. In: Gatenholm P, Tenkanen M (eds) Hemicelluloses: Science and technology, vol 864. ACS Symposium Series, vol 864. American Chemical Society, pp 269–290Google Scholar
  45. Pauly M, Albersheim P, Darvill A, York WS (1999) Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. Plant J 20(6):629–639CrossRefGoogle Scholar
  46. Pecora R (ed) (1985) Dynamic light scattering: Applications of photon correlation spectroscopy. Plenum Press, New YorkGoogle Scholar
  47. Sims IM, Munro SL, Currie G, Craik D, Bacic A (1996) Structural characterisation of xyloglucan secreted by suspension-cultured cells of Nicotiana plumbaginifolia. Carbohydr Res 293(2):147–172CrossRefGoogle Scholar
  48. Taiz L, Zeiger E (2002) Cell walls: structure, biogenesis and expansion. In: Plant physiology. Sinauer Associates, Sunderland, pp 313–338Google Scholar
  49. Tokoh C, Takabe K, Fujita M, Saiki H (1998) Cellulose synthesized by Acetobacter xylinum in the presence of acetyl glucomannan. Cellulose 5(4):249–261CrossRefGoogle Scholar
  50. Tokoh C, Takabe K, Sugiyama J, Fujita M (2002) Cellulose synthesized by Acetobacter xylinum in the presence of plant cell wall polysaccharides. Cellulose 9(1):65–74CrossRefGoogle Scholar
  51. Vincken JP, Dekeizer A, Beldman G, Voragen AGJ (1995) Fractionation of xyloglucan fragments and their interaction with cellulose. Plant Physiol 108(4):1579–1585CrossRefGoogle Scholar
  52. Vincken JP, York WS, Beldman G, Voragen AG (1997) Two general branching patterns of xyloglucan, XXXG and XXGG. Plant Physiol 114(1):9–13CrossRefGoogle Scholar
  53. Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ (1998) Structural aspects of the interaction of mannan-based polysaccharides with bacterial cellulose. Carbohyd Res 307(3–4):299–309CrossRefGoogle Scholar
  54. Whitney SEC, Wilson E, Webster J, Bacic A, Reid JSG, Gidley MJ (2006) Effects of structural variation in xyloglucan polymers on interactions with bacterial cellulose. Am J Bot 93(10):1402–1414CrossRefGoogle Scholar
  55. Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88(7):797–824CrossRefGoogle Scholar
  56. Zhang YHP, Lynd LR (2005) Determination of the number-average degree of polymerization of cellodextrins and cellulose with application to enzymatic hydrolysis. Biomacromolecules 6(3):1510–1515CrossRefGoogle Scholar
  57. Zhang YHP, Cui JB, Lynd LR, Kuang LR (2006) A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules 7(2):644–648CrossRefGoogle Scholar
  58. Zhang JH, Zhang JQ, Lin L, Chen TM, Zhang J, Liu SJ, Li ZJ, Ouyang PK (2009) Dissolution of microcrystalline cellulose in phosphoric acid-molecular changes and kinetics. Molecules 14(12):5027–5041CrossRefGoogle Scholar
  59. Zhang Q, Brumer H, Agren H, Tu YQ (2011) The adsorption of xyloglucan on cellulose: effects of explicit water and side chain variation. Carbohyd Res 346(16):2595–2602CrossRefGoogle Scholar
  60. Zhu SD, Wu YX, Chen QM, Yu ZN, Wang CW, Jin SW, Ding YG, Wu G (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8(4):325–327CrossRefGoogle Scholar
  61. Zografi G, Kontny MJ, Yang AYS, Brenner GS (1984) Surface-area and water-vapor sorption of microcrystalline cellulose. Int J Pharm 18(1–2):99–116CrossRefGoogle Scholar
  62. Zykwinska AW, Ralet MCJ, Garnier CD, Thibault JFJ (2005) Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiol 139(1):397–407CrossRefGoogle Scholar
  63. Zykwinska A, Gaillard C, Buleon A, Pontoire B, Garnier C, Thibault JF, Ralet MC (2007) Assessment of in vitro binding of isolated pectic domains to cellulose by adsorption isotherms, electron microscopy, and X-ray diffraction methods. Biomacromolecules 8(1):223–232CrossRefGoogle Scholar
  64. Zykwinska A, Thibault JF, Ralet MC (2008a) Competitive binding of pectin and xyloglucan with primary cell wall cellulose. Carbohyd Polym 74(4):957–961CrossRefGoogle Scholar
  65. Zykwinska A, Thibault JF, Ralet MC (2008b) Modelling of xyloglucan, pectins and pectic side chains binding onto cellulose microfibrils. Carbohyd Polym 74(1):23–30CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Intercollege Graduate Degree Program in Plant BiologyThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Agricultural and Biological EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations