Advertisement

Cellulose

, Volume 20, Issue 4, pp 1819–1828 | Cite as

In situ polymerization and characterization of elastomeric polyurethane-cellulose nanocrystal nanocomposites. Cell response evaluation

  • L. Rueda
  • A. Saralegi
  • B. Fernández-d’Arlas
  • Q. Zhou
  • A. Alonso-Varona
  • L. A. Berglund
  • I. Mondragon
  • M. A. Corcuera
  • A. EceizaEmail author
Original Paper

Abstract

Polyurethane/Cellulose nanocrystal (CNC) nanocomposites have been prepared by means of in situ polymerization using CNCs as precursors of polyurethane chains. Thermal, mechanical and morphological characterization has been analyzed to study the effect of CNC on the micro/nanostructure, which consisted of individualized nanocellulose crystallites covalently bonded to hard and soft segments of polyurethane. The incorporation of low CNC content led to a tough material whereas higher amount of CNC provoked an increase in soft and hard segments crystallization phenomenon. Moreover, from the viewpoint of polyurethane and polyurethane nanocomposites applications focused on biomedical devices, biocompatibility studies can be considered necessary to evaluate the influence of CNC on the biological behaviour. SEM micrographs obtained from cells seeded on top of the materials showed that L-929 fibroblasts massively colonized the materials surface giving rise to good substrates for cell adhesion and proliferation and useful as potential materials for biomedical applications.

Keywords

Cellulose nanocrystals Polyurethane Biocompatibility Atomic force microscopy 

Notes

Acknowledgments

This work was supported by the University of the Basque Country (PIFA/01/2006/045 and PES11/13), the Basque Government ‘Saiotek 11-S-PE11UN132′ and ‘Grupos de Investigación Consolidados’ (IT-776-13). We would like to acknowledge General Research Services from the University of the Basque Country (SGIker) for their technical support. This article is dedicated to Prof. Mondragon, who founded the research group “Materiales + Tecnologías” (GMT) in 1988, in special recognition of the contributions to science research.

Conflict of interest

The authors declare no competing financial interest.

References

  1. Aneja A, Wilkes SL (2003) A systematic series of ‘model’ PTMO based segmented polyurethanes reinvestigated using atomic force microscopy. Polymer 44:7221–7228CrossRefGoogle Scholar
  2. Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27CrossRefGoogle Scholar
  3. Cao X, Habibi Y, Lucia LA (2009) One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. J Mater Chem 19:7137–7145CrossRefGoogle Scholar
  4. Chen TK, Shieh TS, Chui JY (1998) Studies on the first DSC endotherm of polyurethane hard segment based on 4,4`-diphenylmethane diisocyanate and 1,4-butanediol. Macromolecules 31:1312–1320CrossRefGoogle Scholar
  5. Christenson EM, Anderson JM, Hiltner A, Baer E (2005) Relationship between nanoscale deformation processes and elastic behavior of polyurethane elastomers. Polymer 46:11744–11754CrossRefGoogle Scholar
  6. Cuve L, Pascault JP, Boiteux G, Seytre G (1991) Rigid polyurethanes and amorphous segmented polyurethanes prepared in polar solvents under homogeneous conditions. Polymer 32:343–352CrossRefGoogle Scholar
  7. Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12CrossRefGoogle Scholar
  8. Eceiza A, Martin MD, de la Caba K, Kortaberria G, Gabilondo N, Corcuera MA, Mondragon I (2008) Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: mechanical and thermal properties. Polym Eng Sci 48:297–306CrossRefGoogle Scholar
  9. Fong N, Simmons A, Poole-Warren L (2011) Recent advances in elastomeric nanocomposites. In: Mittal V, Kim JK, Pal K (eds.). Springer 9, pp 257–280Google Scholar
  10. Granja PL, Ribeiro CC, de Jeso B, Baquey C, Barbosa MA (2001) Mineralization of regenerated cellulose hydrogels. J Mater Sci Mater Med 12:785–791CrossRefGoogle Scholar
  11. Granja PL, De Jéso B, Bareille R, Rouais F, Baquey Ch, Barbosa M (2006) Cellulose phosphates as biomaterials. In vitro biocompatibility studies. React Funct Polym 66:728–739CrossRefGoogle Scholar
  12. Habibi Y, Goffin A-L, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18:5002–5010CrossRefGoogle Scholar
  13. Habibi Y, Lucía LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly and applications. Chem Rev 110:3479–3500CrossRefGoogle Scholar
  14. Hoenich N (2006) Cellulose for medical applications: past, present, and future. BioResources 1:270–280Google Scholar
  15. Hsu SH, Tang ChM, Tsen HJ (2008a) Gold nanoparticles induce surface morphological transformation in polyurethane and affect the cellular response. Biomacromolecules 9:241–248CrossRefGoogle Scholar
  16. Hsu SH, Tang ChM, Tsen HJ (2008b) Biostability and biocompatibility of poly(ester urethane)–gold nanocomposites. Acta Biomater 4:1797–1808CrossRefGoogle Scholar
  17. Hule RA, Pochan DJ (2007) Polymer nanocomposites for biomedical applications. MRS Bull 32:354–358CrossRefGoogle Scholar
  18. Hung HS, Hsu SH (2009) The response of endothelial cells to polymer surface composed of nanometric micelles. New Biotech 25:235–243CrossRefGoogle Scholar
  19. ISO 10993-5 (1999) Biological evaluation of medical devices. Test for in vitro cytotoxicity. Geneva, Switzerland: International Organization for StandarizationGoogle Scholar
  20. Koberstein JT, Galambos AF, Leung LM (1992) Compression-molded polyurethane block copolymers. 1 Microdomain Morpholthermomechanical properties. Macromolecules 25:6195–6204CrossRefGoogle Scholar
  21. Kovacs T, Naish V, O’Connor B, Blaise Ch, Gagné F, Hall L, Trudeau V, Martel P (2010) An ecotoxicological characterization of nanocrystalline cellulose. Nanotoxicology 4:255–270CrossRefGoogle Scholar
  22. Krouit M, Bras J, Belgacem MN (2008) Cellulose surface grafting with polycaprolactone by heterogeneous click-chemistry. Eur Polym J 44:4074–4081CrossRefGoogle Scholar
  23. Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487–492CrossRefGoogle Scholar
  24. Loh XJ, Zhang ZX, Wu YL, Lee TS, Li J (2009) Synthesis of novel biodegradable thermoresponsive triblock copolymers based on poly[(R)-3-hydroxybutyrate] and poly(N-isopropylacrylamide) and their formation of thermoresponsive micelles. Macromolecules 42:194–202CrossRefGoogle Scholar
  25. Migtragotri S, Lahann J (2009) Physical approaches to biomaterial design. Natur Mater 8:15–23CrossRefGoogle Scholar
  26. Northup SJ (2004) Biomaterials science. An introduction to materials in medicine. In vitro assessment of tissue compatibility. In: Rather BD, Hoffman AS, Shoen FJ, Lemons JE (eds) 2nd ed. Elsevier Academic, San Diego, pp 356–360Google Scholar
  27. Northup SJ, Cammack JN (1999). Handbook of biomaterials evaluation: Scientific, technical and clinical testing of implant materials. Mammalian cell culture models. In: AF Von Recum (ed) 2nd ed. Taylor & Francis: Philadelphia, pp 325–339Google Scholar
  28. Pei A, Zhou Q, Berglund LA (2010) Functionalized cellulose nanocrystals as biobased nucleation agents in poly(L-lactide) (PLLA)—crystallization and mechanical property effects. Comp Sci Technol 70:815–821CrossRefGoogle Scholar
  29. Pei A, Malho J-M, Ruokolainen J, Zhou Q, Berglund LA (2011) Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals. Macromolecules 44:4422–4427CrossRefGoogle Scholar
  30. Roman M, Dong S, Hirani A, Lee YW (2009) Polysaccaride materials: performance by design. ACS Symposium Series, pp 81–91Google Scholar
  31. Rueda L, Fernández d’Arlas B, Zhou Q, Berglund LA, Corcuera MA, Mondragon I, Eceiza A (2011a) Isocyanate-rich cellulose nanocrystals and their selective insertion in elastomeric polyurethane. Comp Sci Technol 71:1953–1960CrossRefGoogle Scholar
  32. Rueda L, Garcia I, Palomares T, Alonso-Varona A, Mondragon I, Corcuera MA, Eceiza A (2011b) The role of reactive silicates on the structure/property relationships and cell response evaluation in polyurethane nanocomposites. J Biomed Mater Res Part A 97A:480–489CrossRefGoogle Scholar
  33. Rueda-Larraz L, Fernandez d’Arlas B, Tercjak A, Ribes A, Mondragon I, Eceiza A (2009) Synthesis and microstructure–mechanical property relationships of segmented polyurethanes based on a PCL–PTHF–PCL block copolymer as soft segment. Eur Polym J 45:2096–2109CrossRefGoogle Scholar
  34. Saiani A, Novak A, Rodier L, Eeckhaut G, Leenslag JW, Higgins JS (2007) Origin of multiple melting endotherms in a igh hard block content polyurethane: effect of annealing temperature. Macromolecules 40:7252–7262CrossRefGoogle Scholar
  35. Siqueira G, Bras J, Dufresne A (2009) Cellulose Whiskers versus Microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432CrossRefGoogle Scholar
  36. Tien YI, Wei KH (2006) Waterborne polyurethane/clay nanocomposites: nNovel effects of the clay and its interlayer ions on the morphology and physical and electrical properties. Macromolecules 39:6133–6141CrossRefGoogle Scholar
  37. Viet D, Beck-Candanedo S, Gray DG (2006) Dispersion of cellulose nanocrystals in polar organic solvents. Cellulose 14:109–113CrossRefGoogle Scholar
  38. Wang HH, Chen KV (2007) A novel synthesis of reactive nano-clay polyurethane and its physical and dyeing properties. J Appl Polym Sci 105:1581–1590CrossRefGoogle Scholar
  39. Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29:2941–2953CrossRefGoogle Scholar
  40. Wunderlich B (1976) Crystal nucleation, growth, annealing. Academic Press, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • L. Rueda
    • 1
  • A. Saralegi
    • 1
  • B. Fernández-d’Arlas
    • 1
  • Q. Zhou
    • 2
    • 3
  • A. Alonso-Varona
    • 5
  • L. A. Berglund
    • 2
    • 4
  • I. Mondragon
    • 1
  • M. A. Corcuera
    • 1
  • A. Eceiza
    • 1
    Email author
  1. 1.Materials + Technologies’ Group, Department of Chemical and Environmental Engineering, Polytechnic SchoolUniversity of the Basque CountryDonostia-San SebastiánSpain
  2. 2.Department of Fibre and Polymer TechnologyRoyal Institute of TechnologyStockholmSweden
  3. 3.School of Biotechnology, Royal Institute of TechnologyAlbaNova University CentreStockholmSweden
  4. 4.Wallenberg Wood Science CenterRoyal Institute of TechnologyStockholmSweden
  5. 5.Department of Celular Biology and Histology, Faculty of Medicine and OdontologyUniversity of the Basque CountryLeioaSpain

Personalised recommendations