Advertisement

Cellulose

, Volume 20, Issue 4, pp 1547–1561 | Cite as

Novel concepts of dissolving pulp production

  • Herbert SixtaEmail author
  • Mikhail Iakovlev
  • Lidia Testova
  • Annariikka Roselli
  • Michael Hummel
  • Marc Borrega
  • Adriaan van Heiningen
  • Carmen Froschauer
  • Herwig Schottenberger
Review Paper

Abstract

Herein, we report about existing and novel dissolving pulp processes providing the basis for an advanced biorefinery. The SO2–ethanol–water (SEW) process has the potential to replace the acid sulphite process for the production of rayon-grade pulps owing to a higher flexibility in the selection of the raw material source, substantially lower cooking times, and the near absence of sugar degradation products. Special attention is paid to developments that target toward the selective and quantitative fractionation of paper-grade pulps into hemicelluloses and cellulose of highest purity. This target has been accomplished by the IONCELL process where the entire hemicellulose fraction is selectively dissolved in an ionic liquid in which the H-bond basicity and acidity are adequately adjusted by the addition of a co-solvent. At the same time, pure hemicellulose can be recovered by further addition of the co-solvent, which then acts as a non-solvent. The residual pure cellulose fraction may then enter a Lyocell process for the production of regenerated cellulose products.

Keywords

Dissolving pulp Acid sulfite pulp Prehydrolysis-Kraft pulp Cold caustic extraction Ionic liquids Ioncell process 

Notes

Acknowledgments

Funding from Finnish Funding Agency for Technology and Innovation (Tekes) and FiBiC (former Forestcluster Ltd.) as a part of the Future Biorefinery programme is gratefully acknowledged.

References

  1. Alekhina M, Mikkonen KS, Alen R, Tenkanen M, Sixta H (2013) Preparation and characterization of biodegradable carboxymethyl xylan based film. Carbohydr Polym (in press). doi: 101016/jcarbpol201303048
  2. Berggren R, Berthold F, Sjöholm E, Lindström M (2003) Improved methods for evaluating the molar mass distributions of cellulose in kraft pulp. J Appl Polym Sci 88:1170–1179CrossRefGoogle Scholar
  3. Borrega M, Nieminen K, Sixta H (2011) Degradation kinetics of the main carbohydrates in birch wood during hot water extraction in a batch reactor at elevated temperatures. Bioresour Technol 6:1890–1903Google Scholar
  4. Borrega M, Tolonen LK, Bardot F, Testova L, Sixta H (2013) Potential of hot water extraction of birch wood to produce high-purity dissolving pulp after alkaline pulping. Bioresour Technol 135:665–671Google Scholar
  5. Brice R (2012) High purity cellulose through 2020. In: The cellulose gap Monte Carlo. http://csales.ch/cellulosegap2012_lineup.php
  6. Doherty TV, Mora-Pale M, Foley SE, Linhardt RJ, Dordick JS (2010) Ionic liquid solvent properties as predictors of lignocellulose pretreatment efficacy. Green Chem 11:1967–1975CrossRefGoogle Scholar
  7. Fasching M, Griebl A, Kandioller G, Zieher A, Weber H, Sixta H (2005) Prehydrolysis sulfite revisited. Macromol Symp 223:225–238CrossRefGoogle Scholar
  8. Froschauer C, Hummel M, Iakovlev M, Roselli A, Schottenberger H, Sixta H (2013) Fractionation of hemicellulose-rich pulp into hemicellulose and cellulose by means of ionic liquid/cosolvent mixtures. Biomacromolecules. doi: 10.1021/bm400106h
  9. Gehmayr V, Schild G, Sixta H (2011) A precise study on the feasibility of enzyme treatments of a kraft pulp for viscose application. Cellulose 18:479–491CrossRefGoogle Scholar
  10. Guetsch J, Sixta H (2012) Regeneration of spent activated charcoals used for lignin removal from prehydrolysis-kraft prehydrolysates. Ind Eng Chem Res 51:8624–8630CrossRefGoogle Scholar
  11. Guetsch J, Leschinsky M, Sixta H (2011) Process for improved processability of hydrothermolyzates of lignocellulosic material by hydrolysis and adsorption. WO 2011150436 A1 20111208: WO 2011150436 A1 20111208Google Scholar
  12. Haemmerle FM (2011) The cellulose gap. Lenzinger Berichte 89:12–21Google Scholar
  13. Hauru LKJ, Hummel M, King AWT, Kilpeläinen I, Sixta H (2012) Role of solvent parameters in the regeneration of cellulose from ionic liquid solutions. Biomacromolecules 13:2896–2905CrossRefGoogle Scholar
  14. Heikkila H, Kuisma J, Lindroos M, Puuppo O, Eroma O-P (1999) Method of producing xylose by chromatographic separation of xylose from sulfite cooking liquors. WO 9934021 A1 19990708Google Scholar
  15. Hinck JF, Casebier RL, Hamilton JK (1985) Dissolving pulp manufacturing. In: Ingruber OV, Kocurek MJ, Wong A (eds) Sulfite science and technology. TAPPI, Atlanta, pp 213–243Google Scholar
  16. Huepfl J, Zauner J (1966) Pruefung von Chemiefaserzellstoffen an einer Viskose-Kleinstanlage. Das Papier 20:125–132Google Scholar
  17. Iakovlev M, Heiningen A (2012) Efficient fractionation of spruce by SO2-ethanol-water treatment: closed mass balances for carbohydrates and sulfur. ChemSusChem 5:1625–1637CrossRefGoogle Scholar
  18. Ibarra D, Koepcke V, Ek M (2009) Exploring enzymatic treatments for the production of dissolving grade pulp from different wood and non-wood paper grade pulps. Holzforschung 63:721–730CrossRefGoogle Scholar
  19. Ibarra D, Koepcke V, Ek M (2010a) Behavior of different monocomponent endoglucanases on the accessibility and reactivity of dissolving-grade pulps for viscose process. Enzym Microb Technol 47:355–362CrossRefGoogle Scholar
  20. Ibarra D, Koepcke V, Larsson PT, Jaeaeskelaeinen A-S, Ek M (2010b) Combination of alkaline and enzymatic treatments as a process for upgrading sisal paper-grade pulp to dissolving-grade pulp. Bioresour Technol 101:7416–7423CrossRefGoogle Scholar
  21. Janson J (1974) Analytik der Polysaccharide in Holz und Zellstoff. Faserforschung und Textiltechnik 25:375–382Google Scholar
  22. Janzon R, Puls J, Saake B (2006) Upgrading of paper-grade pulps to dissolving pulps by nitren extraction: optimisation of extraction parameters and application to different pulps. Holzforschung 60:347–354CrossRefGoogle Scholar
  23. Janzon R, Puls J, Bohn A, Potthast A, Saake B (2008) Upgrading of paper-grade pulps to dissolving pulps by nitren extraction: yields, molecular and supramolecular structures of nitren extracted pulps. Cellulose 15:739–750CrossRefGoogle Scholar
  24. Kettenbach G, Stein A (2002) Process for separating hemicellulose from biomass, and the resulting biomass and hemicellulose. DE 10109502 A1 20020912: Ger. OffenGoogle Scholar
  25. Koepcke V, Ibarra D, Ek M (2008) Increasing accessibility and reactivity of paper grade pulp by enzymatic treatment for use as dissolving pulp. Nord Pulp Pap Res J 23:363–368CrossRefGoogle Scholar
  26. Koepcke V, Ibarra D, Larsson PT, Ek M (2010a) Optimization of treatment sequences for the production of dissolving pulp from birch kraft pulp. Nord Pulp Pap Res J 25:31–38CrossRefGoogle Scholar
  27. Koepcke V, Ibarra D, Larsson PT, Ek M (2010b) Optimization of treatments for the conversion of eucalyptus kraft pulp to dissolving pulp. Polym Renew Resour 1:17–34Google Scholar
  28. Leschinsky M, Sixta H, Patt R (2009) Detailed mass balances of the autohydrolysis of Eucalyptus globulus at 170 °C. Bioresources 4:687–703Google Scholar
  29. Li J, Gellerstedt G, Lutnaes B (2008) Tetraethylammonium salt preparation and sulphonate group NMR quantification of industrial lignosulphonates. In: 10th European Workshop on Lignocellulosics and Pulp Stockholm, SwedenGoogle Scholar
  30. Penttilae PA, Várnai A, Leppaenen K, Peura M, Kallonen A, Jaeaeskelaeinen P, Lucenius J, Ruokolainen J, Siika-aho M, Viikari L, Serimaa R (2010) Changes in submicrometer structure of enzymatically hydrolyzed microcrystalline cellulose. Biomacromolecules 11:1111–1117CrossRefGoogle Scholar
  31. Puls J, Janzon R, Saake B (2006) Comparative removal of hemicelluloses from paper pulps using nitren, cuen, NaOH and KOH. Lenzinger Berichte 86:63–70Google Scholar
  32. Rauhala T, King A, Zuckerstaetter G, Suuronen S, Sixta H (2011) Effect of autohydrolysis on the lignin structure and the kinetics of delignification of birch wood. Nord Pulp Pap Res J 26:386–391CrossRefGoogle Scholar
  33. Roeder T, Moosbauer J, Fasching M, Bohn A, Fink H-P, Baldinger T, Sixta H (2006) Crystallinity determination of man-made cellulose fibers—a comparison of analytical methods. Lenzinger Berichte 86:132–136Google Scholar
  34. Rydholm SA (1965) Cold caustic extraction. In: Pulping processes, pp 994–1001: Robert E. KriegerGoogle Scholar
  35. Schild G, Sixta H (2010) Multifunctional alkaline pulping, delignification and hemicellulose extraction. Cellul Chem Technol 44:35–45Google Scholar
  36. Schild G, Sixta H (2011) Sulfur-free dissolving pulps and their application for viscose and lyocell. Cellulose 18:1113–1128CrossRefGoogle Scholar
  37. Schild G, Mueller W, Sixta H (1996) Prehydrolysis kraft and ASAM paper grade pulping of eucalypt wood. A kinetic study. Das Papier 50:10–22Google Scholar
  38. Shen L, Patel MK (2010) Life cycle assessment of man-made cellulose fibers. Lenzinger Berichte 88:1–59Google Scholar
  39. Sixta H (1986) Cellulose preparation and recycling of raw materials and auxiliaries by the Lenzinger magnesium bisulfite process. Lenzinger Berichte 61:5–11Google Scholar
  40. Sixta H (2000) Comparative evaluation of TCF bleached hardwood dissolving pulps. Lenzinger Berichte 79:119–128Google Scholar
  41. Sixta H (ed) (2006a) Multistage kraft pulping. In: Handbook of pulp, vol 1. Wiley-VCH, New York, pp 325–365Google Scholar
  42. Sixta H (ed) (2006b) Pulp properties and applications. In: Handbook of pulp, vol 2. Wiley-VCH, New York, pp 1009–1067Google Scholar
  43. Sixta H (ed) (2006c) Pulp purification. In: Handbook of pulp, vol 2. Wiley-VCH, New York, pp 933–965Google Scholar
  44. Sixta H (ed) (2006d) Sulfite chemical pulping. In: Handbook of pulp, vol 1. Wiley-VCH, New York, pp 392–509Google Scholar
  45. Sixta H, Schild G (2009) New generation kraft process. In: 2nd Nordic Wood Biorefinery Conference HelsinkiGoogle Scholar
  46. Sixta H, Promberger A, Koch G, Gradinger C, Messner K (2004) Influence of beech wood quality on bisulfite dissolving pulp manufacture. Part 1: influence of log storage on pulping and bleaching. Holzforschung 58:14–21CrossRefGoogle Scholar
  47. Sixta H, Borrega M, Testova L, Costabel L, Alekhina M, Guetsch J (2011a) Progress and challenges in the separation and purification of xylan from hardwood. In: 3rd nordic wood and biorefinery conference (NWBC) Stockholm, March 22–24Google Scholar
  48. Sixta H, Guetsch J, Nousiainen T, Wollboldt P (2011b) Progress and challenges in the isolation of xylan from Eucalyptus Wood. In: 5th international colloquium on eucalyptus pulp porto seguro, May 8–11Google Scholar
  49. Sixta H, Hummel M, Michud A, Hauru LKJ, Froschauer C, Schottenberger H (2012) Progress in processing lignocellulose with ionic liquids. In: 3rd international cellulose conference (ICC2012) Sapporo, JapanGoogle Scholar
  50. Sjoestroem E (1993) Wood chemistry: fundamentals and applications. Academic Press, New YorkGoogle Scholar
  51. Sklavounos E, Iakovlev M, Heiningen A (2013) Study on conditioning of SO2-ethanol-water spent liquor from spruce chips/softwood biomass for ABE fermentation. Ind Eng Chem Res 52(11):4351–4359Google Scholar
  52. Swan B (1965) Isolation of acid-soluble lignin from the Klason lignin determination. Svenska Papperstidning 68:791–795Google Scholar
  53. Swatlowski RP, Scott K, Hilbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975CrossRefGoogle Scholar
  54. Temming H, Grunert H (1973) Temming linters. Peter Temming AG, GlueckstadtGoogle Scholar
  55. Testova L, Sixta H (2013) Development of an alkali-borax refining treatment for the conversion of a commercial pine paper pulp to an acetate-grade dissolving pulp. In: WOBAMA progress report. doi: 10.1016/j.carbpol.2013.01.093
  56. Testova L, Nieminen K, Penttilae PA, Serimaa R, Potthast A, Sixta H (2013) Cellulose degradation in alkaline media upon acidic pretreatment and stabilization. Carbohydr Polym (accepted)Google Scholar
  57. Treiber E, Rehnstroem J, Ameen C, Kolos F (1962) A small scale laboratory viscose plant for testing rayon grade pulps. Das Papier 16:85–94Google Scholar
  58. Vaaler DAG (2008) Yield-increasing additives in kraft pulping: effect on carbohydrate retention, composition and handsheet properties. In: Department of Chemical Engineering, PhD thesis Trondheim: Norwegian University of Science and TechnologyGoogle Scholar
  59. Wedzicha BL, Goddard SJ (1991) The state of sulfur dioxide at high concentration and low water activity. Food Chem 40:119–136CrossRefGoogle Scholar
  60. Wiley E (2011) The practicalities of converting to DP technology. Andritz Pulp&PaperGoogle Scholar
  61. Wilson JD, Tabke RS (1974) Influence of hemicelluloses on acetate processing in high catalyst systems. Tappi 57:77–80Google Scholar
  62. Wizani W, Krotscheck A, Schuster J, Lackner K (1994) Visose production process. WO 9412719 A1 19940609Google Scholar
  63. Wollboldt P (2011) Lignosulfonate characterization. Wood KPlusGoogle Scholar
  64. Wollboldt P, Zuckerstaetter G, Weber H, Larsson PT, Sixta H (2010) Accessibility, reactivity and supramolecular structure of E. globulus pulps with reduced xylan content. Wood Sci Technol 44:533–546CrossRefGoogle Scholar
  65. Xing R, Qi W, Huber GW (2011) Production of furfural and carboxylic acids from waste aqueous hemicellulose solutions from the pulp and paper and cellulosic ethanol industries. Energy Environ Sci 4:2193–2205CrossRefGoogle Scholar
  66. Zaranyika MF, Madimu M (1989) Heterogeneous dilute acid hydrolysis of cellulose: a kinetic model for the hydrolysis of the difficultly accessible portion of cellulose based on Donnan’s theory of membrane equilibria. J Polym Sci Part A Polym Chem 6:1863–1872CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Herbert Sixta
    • 1
    Email author
  • Mikhail Iakovlev
    • 1
  • Lidia Testova
    • 1
  • Annariikka Roselli
    • 1
  • Michael Hummel
    • 1
  • Marc Borrega
    • 1
  • Adriaan van Heiningen
    • 2
  • Carmen Froschauer
    • 3
  • Herwig Schottenberger
    • 3
  1. 1.Department of Forest Products Technology, School of Chemical TechnologyAalto UniversityEspooFinland
  2. 2.Department of Chemical and Biological EngineeringUniversity of MaineOronoUSA
  3. 3.Faculty of Chemistry and PharmacyUniversity of InnsbruckInnsbruckAustria

Personalised recommendations