Cellulose

, Volume 20, Issue 4, pp 1629–1637 | Cite as

Compositional analysis of Miscanthus giganteus by near infrared spectroscopy

  • Fernanda B. Haffner
  • Valerie D. Mitchell
  • Rebecca A. Arundale
  • Stefan Bauer
Original Paper

Abstract

Fourier transform near infrared spectroscopy was applied to ball-milled and dried whole plant Miscanthus × giganteus samples in combination with partial least square regression analysis for prediction of main constituents of the biomass. The developed models with 172 calibration samples had an R2 in the range of 0.96–0.99. For the first time, the acetyl content was modeled for Miscanthus. An independent calibration set of 58 samples revealed a low root mean square error of prediction of 0.414 % for extractives, 0.485 % for glucan, 0.249 % for xylan, 0.061 % for arabinan, 0.050 % for acetyl, 0.198 % for Klason lignin, 0.226 % for total ash and 0.133 % for ash after extraction, an indication of a high level of accuracy. The results showed major improvement over previously reported models, which was attributed to the smaller particle size used. The models are a valuable tool for the fast monitoring of the composition of M. × giganteus in e.g. plant breeding studies.

Keywords

Miscanthus FT-NIR Composition PLS regression Chemometrics 

References

  1. AACC (1999) Approved methods of the American Association of Cereal Chemists, method 39-00. Near-infrared methods-guidelines for model development and maintenance. AACC Press, St. PaulGoogle Scholar
  2. Allison GG, Morris C, Hodgson E, Jones J, Kubacki M, Barraclough T et al (2009) Measurement of key compositional parameters in two species of energy grass by fourier transform infrared spectroscopy. Bioresour Technol 100:6428–6433CrossRefGoogle Scholar
  3. Beale CV, Long SP (1995) Can perennial C4 grasses attain high efficiencies of radiant energy conversion in cool climates? Plant Cell Environ 18:641–650CrossRefGoogle Scholar
  4. Brosse N, Dufour A, Meng X, Sun Q, Ragauskas A (2012) Miscanthus: a fast-growing crop for biofuel and chemical production. Biofuels Bioprod Biorefin 6:580−598Google Scholar
  5. Chen Y, Xie M, Zhang H, Wang Y, Nie S, Li C (2012) Quantification of total polysaccharides and triterpenoids in Ganoderma lucidum and Ganoderma atrum by near infrared spectroscopy and chemometrics. Food Chem 135:268–275CrossRefGoogle Scholar
  6. Clark DH, Mayland HF, Lamb RC (1987) Mineral analysis of forages with near infrared reflectance spectroscopy. Agron J 79:485–490CrossRefGoogle Scholar
  7. Fagan CC, Everard CD, McDonell K (2011) Prediction of moisture, calorific value, ash and carbon content of two dedicated bioenergy crops using near-infrared spectroscopy. Bioresour Technol 102:5200–5206CrossRefGoogle Scholar
  8. Fearn T (2002) Assessing calibrations: SEP, RPD, RER and R2. NIR News 113:12–14CrossRefGoogle Scholar
  9. Hames BR, Thomas SR, Sluiter AD, Roth CJ, Templeton DW (2003) Rapid biomass analysis. Appl Biochem Biotechnol 105:5–16CrossRefGoogle Scholar
  10. Hayes DJM (2012) Development of near infrared spectroscopy models for the quantitative prediction of the lignocellulosic components of wet Miscanthus samples. Bioresour Technol 119:393–405CrossRefGoogle Scholar
  11. Heise HM, Winzen R (2002) Chemometrics in near-infrared spectroscopy. In: Siesler HW, Ozaki Y, Kawata S, Heise HM (eds) Near-infrared spectroscopy: principles instruments, applications. Wiley-VCH, Weinheim, pp 125–162Google Scholar
  12. Hodgson EM, Lister SJ, Bridgwater AV, Clifton-Brown J, Donnison IS (2010) Genotypic and environmentally derived variation in the cell wall composition of Miscanthus in relation to its use as a biomass feedstock. Biomass Bioenery 34:652–660CrossRefGoogle Scholar
  13. Jouan-Rimbaud D, Massart DL (1996) Wavelength selection for the multivariate calibration of near infrared spectroscopic data. In: Davies AMC, Williams P (eds) Near infrared spectroscopy: the future waves. NIR, Chichester, pp 194–197Google Scholar
  14. Lestander TA, Rhen C (2005) Multivariate NIR spectroscopy models for moisture, ash and calorific content in biofuels using bi-orthogonal partial least squares regression. Analyst 130:1182–1189CrossRefGoogle Scholar
  15. Lewandowski I, Clifton-Brown JC, Scurlocl JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19:209–227CrossRefGoogle Scholar
  16. Lewandowski I, Clifton-Brown JC, Andersson B, Basch DG, Christian DG, Jørgensen U et al (2003) Environment and harvest time affects the combustion qualities of Miscanthus genotypes. Agronomy J 95:1274–1280CrossRefGoogle Scholar
  17. Liu L, Ye XP, Womac AR, Sokhansanj S (2010) Variability of biomass chemical composition and rapid analysis using FT-NIR techniques. Carbohydr Polym 81:820–829CrossRefGoogle Scholar
  18. Long SP, Beale CV (2011) Resource capture by Miscanthus. In: Jones MB, Walsh M (eds) Miscanthus for energy and fiber. James and James, London, pp 10–20Google Scholar
  19. Sanderson AM (1996) Compositional analysis of biomass feedstocks by near infrared reflectance spectroscopy. Biomass Bioenergy 11:365–370CrossRefGoogle Scholar
  20. Shenk J, Westerhaus M (1996) Calibration the ISI way. In: Davies AMC, Williams P (eds) Near infrared spectroscopy: the future waves. NIR, Chichester, pp 198–202Google Scholar
  21. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of ash in biomass. Laboratory Analytical Procedures (LAP), National Renewable Energy Laboratory (NREL), Golden, CO. http://www.nrel.gov/biomass/analytical_procedures.html. Accessed Jul 2012
  22. Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Determination of extractives in biomass. Laboratory Analytical Procedures (LAP), National Renewable Energy Laboratory (NREL), Golden, CO. Revised version Jan 2008. http://www.nrel.gov/biomass/analytical_procedures.html. Accessed Jul 2012
  23. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J (2011) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedures (LAP), National Renewable Energy Laboratory (NREL), Golden, CO. Revised version Jul 2011. http://www.nrel.gov/biomass/analytical_procedures.html. Accessed Jul 2012
  24. Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792CrossRefGoogle Scholar
  25. Sun B, Liu J, Liu S, Yang Q (2011) Application of FT-NIR-DR and FT-IR-ATR spectroscopy to estimate the chemical composition of bamboo (Neosinocalamus affinis Keng). Holzforschung 65:689–696CrossRefGoogle Scholar
  26. Wolfrum EJ, Sluiter AD (2009) Improved multivariate calibration models for corn stover feedstock and dilute-acid pretreated corn stover. Cellulose 16:567–576CrossRefGoogle Scholar
  27. Wolfrum EJ, Lorenz AJ, deLeon N (2009) Correlating detergent fiber analysis and dietary fiber analysis data for corn stover collected by NIRS. Cellulose 16:577–585CrossRefGoogle Scholar
  28. Workman JJ Jr (1996) Interpretive spectroscopy for near infrared. Appl Spectrosc Rev 31:251–320CrossRefGoogle Scholar
  29. Wortel ALV, Hansen GW (1996) A chemometric approach: evaluating important parameters in the near infrared in-line calibration. In: Davies AMC, Williams P (eds) Near infrared spectroscopy: the future waves. NIR, Chichester, pp 306–315Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Fernanda B. Haffner
    • 1
  • Valerie D. Mitchell
    • 1
  • Rebecca A. Arundale
    • 2
    • 3
  • Stefan Bauer
    • 1
  1. 1.Energy Biosciences InstituteUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Plant BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Institute for Genomic BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations