Advertisement

Cellulose

, Volume 20, Issue 3, pp 1215–1221 | Cite as

The sonochemical coating of cotton withstands 65 washing cycles at hospital washing standards and retains its antibacterial properties

  • Ilana Perelshtein
  • Yelena Ruderman
  • Nina Perkas
  • Jamie Beddow
  • Gagandeep Singh
  • Mircea Vinatoru
  • Eadaoin Joyce
  • Timothy J. Mason
  • María Blanes
  • Korina Mollá
  • Aharon Gedanken
Original Paper

Abstract

Hospital-acquired nosocomial infections are a major health, and consequently financial issue, in the world healthcare system. The problem of bacterial infections in general, and in hospitals in particular, has led to extensive scientific and industrial efforts to fabricate antibacterial textiles. A sonochemical coating machine was developed and built and its ability to coat antibacterial nanoparticles (NPs) onto 40–50 meter length of materials on a roll to roll basis at a speed of 22 cm/min. Cotton coated sonochemically with copper oxide nanoparticles (CuO NPs) was found to maintain its antibacterial properties even after 65 cycles of washings according to hospital protocols of hygienic washing (75 °C). This demonstrates the good quality and high stability of this sonochemically produced NPs coating on textiles. Durable antibacterial textiles such as these may be suitable for wide spread use in future hospital environments where hygiene control is of paramount importance.

Keywords

Sonochemistry Antibacterial nanoparticles Copper oxide Coating method 

Notes

Acknowledgments

This research was carried out as part of the activities of the SONO Consortium, Contract No. NMP-2008-1.2-1-228730. SONO, is an IP Project of the 7th EC Program.

References

  1. Abramov OV, Gedanken A, Koltypin Y, Perkas N, Perelshtein I, Joyce E, Mason TJ (2009) Pilot scale sonochemical coating of nanoparticles onto textiles to produce biocidal fabrics. Surf Coat Tech 204:718–722CrossRefGoogle Scholar
  2. Applerot G, Lipovsky A, Dror R, Perkas N, Nitzan Y, Lubart R, Gedanken A (2009) Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS‐mediated cell injury. Adv Fun Mat 19(6):842–852CrossRefGoogle Scholar
  3. Aymonier C, Schlotterbeck U, Antonietti L, Zacharias P, Thomann R, Tiller JC, Mecking S et al (2002) Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem Comm 24:3018–3019CrossRefGoogle Scholar
  4. Borkow G, Gabbay J (2005) Copper as a biocidal tool. Curr Med Chem 12(8):2163–2175CrossRefGoogle Scholar
  5. Branger B, Senechal H, Bataillon S, Ertzscheid MA, Baron R, Borgey F, Thibon P, Van Der Mee N, Girard N, Wiesel M et al (2005) La consommation de produits d’hygiène des mains dans les établissements de soins dans l’interrégion Ouest. Med et maladies infect 35(6):349–356CrossRefGoogle Scholar
  6. BS EN ISO 20743:2007 ‘Textiles—determination of antibacterial activity of antibacterial finished products’ British Standards Institution, London 2007Google Scholar
  7. Chattopadhyay DP, Patel BH (2010) Effect of nanosized colloidal copper on cotton fabric. J Eng Fib Fabr 5:1–6Google Scholar
  8. Dollwet HHA, Sorenson JRJ (1985) Historic uses of copper compounds in medicine. Trace Elem Med 2(2):80–86Google Scholar
  9. Foster HA, Sheel DW, Sheel P, Evans P, Varghese S, Rutschke N, Yates HM (2010) Antimicrobial activity of titania/silver and titania/copper films prepared by CVD. J Photochem Photobiol, A 216:283–289CrossRefGoogle Scholar
  10. Gabbay J, Borkow G, Mishal J, Magen E, Zatcoff R, Shemer Avni Y (2006) Copper oxide impregnated textiles with potent biocidal activities. J Indus Text 35(4):323–326CrossRefGoogle Scholar
  11. Gedanken A, Shukla S, Gottesman R, Nitzan Y, Solovyov L, Perkas N (2011) Sonochemical coating of paper by microbiocidal silver nanoparticles. Langmuir 27:720–726CrossRefGoogle Scholar
  12. Grace M, Chand N, Bajpai SK (2009) Copper alginate-cotton cellulose (CACC) fibers with excellent antibacterial properties. J Eng Fib Fabr 4:24–35Google Scholar
  13. Kotlyar A, Perkas N, Amiryan G, Meyer M, Zimmermann W, Gedanken AJ (2007) Coating silver nanoparticles on poly (methyl methacrylate) chips and spheres via ultrasound irradiation. Appl Polym Sci 104:2868–2876CrossRefGoogle Scholar
  14. Perelshtein I, Applerot G, Perkas N, Guibert G, Mikhailov S, Gedanken A (2008) Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 19:245705 (6 pp)CrossRefGoogle Scholar
  15. Perelshtein I, Applerot G, Perkas N, Wehrschetz-Sigl E, Hasmann A, Guebitz GM, Gedanken A (2009a) Antibacterial properties of an in situ generated and simultaneously deposited nanocrystalline ZnO on fabrics. ACS Appl Mat Interf 1(2):361–366CrossRefGoogle Scholar
  16. Perelshtein I, Applerot G, Perkas N, Wehrschuetz-Sigl E, Hasmann A, Guebitz GM, Gedanken A (2009b) CuO–cotton nanocomposite: formation, morphology, and antibacterial activity. Surf CoaT Tech 204(1–2):54–57CrossRefGoogle Scholar
  17. Perkas N, Amirian G, Dubinsky S, Gazit S, Gedanken AJ (2007) Ultrasound‐assisted coating of nylon 6, 6 with silver nanoparticles and its antibacterial activity. J Appl Polym Sci 104:1423–1430CrossRefGoogle Scholar
  18. Suslick KS (1989) The chemical effects of ultrasound. Sci Am 260(2):80–86CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ilana Perelshtein
    • 1
  • Yelena Ruderman
    • 1
  • Nina Perkas
    • 1
  • Jamie Beddow
    • 2
  • Gagandeep Singh
    • 2
  • Mircea Vinatoru
    • 2
  • Eadaoin Joyce
    • 2
  • Timothy J. Mason
    • 2
  • María Blanes
    • 3
  • Korina Mollá
    • 3
  • Aharon Gedanken
    • 1
  1. 1.Kanbar Laboratory for Nanomaterials, Department of Chemistry, Institute of Nanotechnology and Advanced MaterialsBar-Ilan UniversityRamat-GanIsrael
  2. 2.Faculty of Health and Life Sciences, Sonochemistry CentreCoventry UniversityCoventryUK
  3. 3.Textile Research Institute, AITEXAlcoySpain

Personalised recommendations