, Volume 20, Issue 4, pp 1711–1723 | Cite as

Highly transparent nancomposite films based on polybutylmethacrylate and functionalized cellulose nanocrystals

Original Research


Efficient surface functionalization of cellulose nanocrystals (CNC) with hydroxyl butyl acrylate monomer (HBA) was carried on under mild condition using N,N′-carbonyldiimidazole as an activator. The grafting of the acrylic monomer was shown to bring about the high yield grafting of polymer chains on the functionalized CNC during in situ polymerization process. Surface functionalization of CNC with HBA and the polymer grafting on the modified CNC were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Nanocomposite film prepared from in situ polybutylmethacrylate polymerization process using HBA functionalized nanocrystals exhibited high transparency degree here assigned to improved dispersion. DMA analysis proved that the best mechanical/rheological performance is obtained for HBA–CNC contents of 4 %.


Cellulose nanowhiskers Polybutylmethacrylate Grafting Polymerization 



Authors would like to thanks NATO project (CBP.MD.CLG982316), the bilateral cooperation of Ministère de la Recherche Scientifique, Technologique et de Développement des Compétences (Tunisia) with GRICES (Portugal), and the FCT post-doctoral grant (AMF), SFRH/BPD/26239/2006, for financial support.


  1. Alila S, Ferraria AM, Botelho do Rego AM, Boufi S (2009) Controlled surface modification of cellulose fibers by amino derivatives using N, N′-carbonyldiimidazole as activator. Carbohydr Polym 77:553–562CrossRefGoogle Scholar
  2. Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626CrossRefGoogle Scholar
  3. Beamson G, Briggs D (1992) High resolution XPS of organic polymers: The scienta ESCA300 database. Wiley, ChichesterGoogle Scholar
  4. Ben Elmabrouk A, Thielemans W, Dufresne A, Boufi S (2009) Preparation of poly(styrene-co-hexylacrylate)/cellulose whiskers nanocomposites via miniemulsion polymerization. J Appl Polym Sci 114:2946–2955CrossRefGoogle Scholar
  5. Ben Mabrouk A, Vilar MR, Magnin A, Belgacem MN, Boufi S (2011a) Synthesis and characterization of cellulose whiskers/polymer nanocomposite dispersion by mini-emulsion polymerization. J Colloid Interface Sci 363(1):129–136CrossRefGoogle Scholar
  6. Ben Mabrouk A, Kaddami H, Magnin A, Belgacem MN, Dufresne A, Boufi S (2011b) Preparation of nanocomposite dispersions based on cellulose whiskers and acrylic copolymer by miniemulsion polymerization: effect of the silane content. Polym Eng Sci 51(1):62–70CrossRefGoogle Scholar
  7. Ben Mabrouk A, Kaddami H, Boufi S, Erchiqui F, Dufresne A (2012) Cellulosic nanoparticles from alfa fibers (stipa tenacissima): extraction procedures and reinforcement potential in polymer nanocomposites. Cellulose 19(3):843–853CrossRefGoogle Scholar
  8. Berlioz S, Molina-Boisseau S, Nishiyama Y, Heux L (2009) Gas-phase surface esterification of cellulose microfibrils and whiskers. Biomacromolecules 10:2144–2151CrossRefGoogle Scholar
  9. Besbes I, Magnin A, Boufi S (2011) Rheological behavior of nanofibrillated cellulose/acrylic polymer nanocomposites: effect of melt extrusion. Poly Compos 32(12):2070–2075CrossRefGoogle Scholar
  10. Boufi S, Rei Vilar M, Parra V, Ferraria AM, Botelho do Rego AM (2008) Grafting of porphyrins on cellulose nanometric films. Langmuir 24:7309–7315CrossRefGoogle Scholar
  11. Chu B (1991) Laser light scattering: basic principles and practice (chapter 2), 2nd edn. Academic Press, BostonGoogle Scholar
  12. de Menezes AJ, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50(19):4552–4563CrossRefGoogle Scholar
  13. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs TJ (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33CrossRefGoogle Scholar
  14. Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367CrossRefGoogle Scholar
  15. Garbout A, Bouattour S, Botelho do Rego AM, Ferraria A, Kolsi AW (2007) Synthesis raman and X-ray diffraction investigations of rubidium-doped Gd1.8Ti2O6.7 pyrochlore oxide via a sol gel process. J Cryst Growth 304(2):374–382CrossRefGoogle Scholar
  16. Goffin AL, Raquez JM, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011) From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromolecules 12:2456–2465CrossRefGoogle Scholar
  17. Gousse C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43(9):2645–2651CrossRefGoogle Scholar
  18. Horikawa Y, Itoh T, Sugiyama J (2006) Preferential uniplanar orientation of cellulose microfibrils reinvestigated by the FTIR technique. Cellulose 13(3):309–316CrossRefGoogle Scholar
  19. Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8:1973–1984CrossRefGoogle Scholar
  20. Labet M, Thielemans W (2011) Improving the reproducibility of chemical reactions on the surface of cellulose nanocrystals: ROP of ε-caprolactone as a case study. Cellulose 18:607–617Google Scholar
  21. Liebert TF, Heinze T (2005) Tailored cellulose esters: synthesis and structure determination. Biomacromolecules 6:333–340CrossRefGoogle Scholar
  22. Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25(14):8280–8286CrossRefGoogle Scholar
  23. Rannard SP, Davis NJ (1999) Controlled synthesis of asymmetric dialkyl and cyclic carbonates using the highly selective reactions of imidazole carboxylic esters. Organ Lett 1:933–936CrossRefGoogle Scholar
  24. Siqueira G, Bras J, Dufresne A (2010) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26(1):402–411CrossRefGoogle Scholar
  25. Tanuma S, Powell CJ, Penn DR (1994) Calculations of electron inelastic mean free paths 5. Data for 14 organic-compounds over the 50–2000-eV range. Surf Interface Anal 21:165–176CrossRefGoogle Scholar
  26. Thielemans W, Belgacem MN, Dufresne A (2006) Starch nanocrystals with large chain surface modifications. Langmuir 22(10):4804–4810CrossRefGoogle Scholar
  27. Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155CrossRefGoogle Scholar
  28. Yuan H, Nishiyama Y, Wada M, Kuga S (2006) Surface acylation of cellulose whiskers by drying aqueous emulsion. Biomacromolecules 7:696–700CrossRefGoogle Scholar
  29. Zoppe JO, Habibi Y, Rojas OJ, Venditti RA, Johansson LS, Efimenko K, Sterberg MO, Laine J (2010) Poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization. Biomacromolecules 11:2683–2691CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Laboratoire des Sciences des Matériaux et EnvironnementUniversity of SfaxSfaxTunisia
  2. 2.Centro de Química-Física Molecular (CQFM) and Institute of Nanoscience and Nanotechnology, ISTTechnical University of LisbonLisbonPortugal

Personalised recommendations