, Volume 20, Issue 3, pp 1369–1376 | Cite as

Viscoelastic properties of cross-linked polyvinyl alcohol and surface-oxidized cellulose whisker hydrogels

Original Paper


Reinforcement of polyvinyl alcohol (PVA) hydrogels was achieved by direct chemical cross-linking of surface modified microcrystalline cellulose (MCC) whiskers with PVA. In order to produce hydrogels, the MCC whiskers were first obtained by TEMPO-mediated oxidation of the cellulose substrate and ultrasonication followed by direct cross-linking to PVA (Mw 98,000) via forming acetal bonds and freeze–thawing. The viscoelastic properties of the produced hydrogels were clearly improved following the chemical cross-linking, featuring values for viscous and elastic moduli G′ and G″ on the order of 10 kPa, which is particularly interesting for biomedical orthopedic applications.


Microcrystalline cellulose Whiskers Polyvinyl alcohol Cross-linking Cryogels 



Dynamic mechanical analysis


Dimethyl sulfoxide


Environmental scanning electron microscopy


Microfibrillated cellulose


Microcrystalline cellulose


Nanocrystalline cellulose


Polyethylene glycol


Polyethelene imine


Polyvinyl alcohol





I thank Prof. Derek Gray for providing lab facilities and discussions. Mr Joshua Kastner and Professor Milan Maric are acknowledged for their assistance during rheology tests. This work has been financed partly by the visiting scientist program of the FQRNT Centre for Self-assembled Chemical structures Network, and partly by the Swedish Research Council and Swedish Royal Academy of Sciences.


  1. Abitbol T, Johnstone T, Quinn TM, Gray DG (2011) Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing. Soft Matter 7:2373CrossRefGoogle Scholar
  2. Alves MH, Jensen BEB, Smith AAA, Zelikin AN (2011) Poly(vinyl alcohol) physical hydrogels: new vista on a long serving biomaterial. Macromol Biosci 11(10):1293–1313CrossRefGoogle Scholar
  3. Bader RA, Rochefort WE (2008) Rheological characterization of photopolymerized poly(vinylalcohol) hydrogels for potential use in nucleus pulposus replacement. J Biomed Mat Res A 86A:494–501Google Scholar
  4. Baker MI, Walsh SP, Schwartz Z, Boyan BD (2012) A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res B Appl Biomater 100(5):1451–1457Google Scholar
  5. Bao Q (1998) US Patent 5705780-AGoogle Scholar
  6. Cascone MG, Laus M, Ricci D, Sbarbati del Guerra R (1995) Evaluation of poly(vinyl alcohol) hydrogels as a component of hybrid artificial tissues. J Mater Sci Mater Med 6:71–75CrossRefGoogle Scholar
  7. Cha W, Hyon S, Ikada Y (1992) Transparent poly(vinil alcohol) hydrogel with high water content and high strength. Macromol Chem 193:1913–1925CrossRefGoogle Scholar
  8. Chang PS, Robyt JFJ (1996) Oxidation of primary alcohol groups of naturally occurring polysaccharides with 2,2,6,6-tetramethyl-1-piperidine oxoammonium ion. Carbohydr Chem 15:819–830CrossRefGoogle Scholar
  9. Choi J, Bodugoz-Senturk H, Kung HJ, Malhi AS, Muratoglu OK (2007) Effects of solvent dehydration on creep resistance of poly(vinyl alcohol) hydrogel. Biomaterials 28:772–780CrossRefGoogle Scholar
  10. de Nooy AEJ, Besemer AC, van Bekkum H (1996) On the use of stable organic nitroxyl radicals for the oxidation of primary and secondary alcohols. Synthesis 10:1153–1174Google Scholar
  11. Fukae R, Yoshimura M, Yamamoto T, Nishinari K (2011) Effect of stereoregularity and molecular weight on the mechanical properties of poly(vinyl alcohol) hydrogel. J Appl Polym Sci 120(1):573–578CrossRefGoogle Scholar
  12. Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687CrossRefGoogle Scholar
  13. Hoshino H, Okada S, Urakawa H, Kajiwara K (1996) Gelation of poly(vinyl alcohol) in dimethyl sulfoxide/water solvent. Polym Bull (Berl) 37:237–244CrossRefGoogle Scholar
  14. Hyon S-H, Cha W-I, Ikada Y (1989) Preparation of transparent poly(vinyl alcohol) hydrogel. Polym Bull (Berl) 22:119–122CrossRefGoogle Scholar
  15. Iatridis JC, Weidenbaum M, Setton LA, Mow VC (1996) Is the nucleus pulposus a solid or a fluid? Mechanical behaviors of the nucleus pulposus of the human intervertebral disc. Spine 21(10):1174–1184CrossRefGoogle Scholar
  16. Inoue T (1972) Water-resistant poly(vinyl alcohol) plastics Japanese patent 47-012,854. Japan PatentGoogle Scholar
  17. Isogai A, Kato Y (1998) Preparation of polyglucuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5:153–164CrossRefGoogle Scholar
  18. Janssen RA, Lee PI, Ajello EM (1992) Preparation of stable polyvinyl alcohol hydrogel contact lens US Patent 5(174):929Google Scholar
  19. Kanaya T, Takahashi N, Takeshita H, Ohkura M, Nishida K, Kaji K (2012) Structure and dynamics of poly(vinyl alcohol) gels in mixtures of dimethyl sulfoxide and water. Polym J 44:83–94CrossRefGoogle Scholar
  20. Kim UJ, Kuga S, Wada M, Okano T, Kondo T (2000) Periodate oxidation of crystalline cellulose. Biomacromolecules 1(3):488–492. doi: 10.1021/Bm0000337 CrossRefGoogle Scholar
  21. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl 50:5438–5466CrossRefGoogle Scholar
  22. Kobayashi M, Chang Y-S, Oka M (2005) A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials 26:3243–3248CrossRefGoogle Scholar
  23. Kuriaki M, Nakamura K, Mizutani J (1989) Application of transparent polyvinyl alcohol (PVA) gel for contact lens. Kobunshi Ronbunshu 46(11):739CrossRefGoogle Scholar
  24. Li W, Yue J, Liu S (2012) Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites. Ultrason Sonochem 19:479–485CrossRefGoogle Scholar
  25. Liu Y, Vrana NE, Cahill PA, McGuinness GB (2009) Physically crosslinked composite hydrogels of PVA with natural macromolecules: structure, mechanical properties, and endothelial cell compatibility. J Biomed Mater Res B Appl Biomater 90B:492–502CrossRefGoogle Scholar
  26. Lozinsky VI (1998) Cryotropic gelation of poly(vinyl alcohol) solutions. Usp Khim 67:641–655CrossRefGoogle Scholar
  27. Lozinsky VI, Plieva FM (1998) Poly(vinylalcohol) cryogels employed as matrices for cell immobilization. 3. Overview of recent research and developments. Enzyme Microb Technol 23:227–242CrossRefGoogle Scholar
  28. Mihranyan A, Edsman K, Strømme M (2007) Rheological properties of cellulose hydrogels prepared from Cladophora cellulose powder. Food Hydrocoll 21:267–272CrossRefGoogle Scholar
  29. Nakamura T, Ueda H, Tsuda T, Li Y-H, Kiyotani T, Inoue M, Matsumoto K, Sekine T, Yu L, Hyon S-H, Shimizu Y (2001) Long-term implantation test and tumorigenicity of polyvinyl alcohol hydrogel plates. J Biomed Mater Res 56(2):289–296CrossRefGoogle Scholar
  30. Otsuka E, Suzuki A (2009) A simple method to obtain a swollen PVA gel crosslinked by hydrogen bonds. J Appl Polym Sci 114:10–16CrossRefGoogle Scholar
  31. Park J-S, Park J-W, Ruckenstein E (2001) On the viscoelastic properties of poly(vinyl alcohol) and chemically crosslinked poly(vinyl alcohol). J Appl Polym Sci 82:1816–1823CrossRefGoogle Scholar
  32. Peppas NA, Stauffer SR (1991) Reinforced uncross-linked poly(vinyl alcohol) gels produced by cyclic freezing-thawing processes: a short review. J Control Release 16(4):305–310CrossRefGoogle Scholar
  33. Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11:674–681CrossRefGoogle Scholar
  34. Ricciardi R, D’Errico G, Auriemma F, Ducouret G, Tedeschi AM, De Rosa C, Laupretre F, Lafuma F (2005) Short time dynamics of solvent molecules and supramolecular organization of poly(vinyl alcohol) hydrogels obtained by freeze/thaw techniques. Macromolecules 38:6629–6639CrossRefGoogle Scholar
  35. Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989CrossRefGoogle Scholar
  36. Saito T, Isogai A (2006) Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation. Colloids Surf A Physicochem Eng Asp 289:219–225CrossRefGoogle Scholar
  37. Saito T, Isogai A (2007) Wet strength improvement of TEMPO-oxidized cellulose sheets prepared with cationic polymers. Ind Eng Chem Res 46:773–780CrossRefGoogle Scholar
  38. Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691CrossRefGoogle Scholar
  39. Steckler R (1984) Disposable, hydrogel soft contact lenses US Patent 4, 426,492Google Scholar
  40. Syverud K, Kirsebom H, Hajizadeh S, Chinga-Carrasco G (2011) Cross-linking cellulose nanofibrils for potential elastic cryo-structured gels. Nanoscale Res Lett 6:626–632CrossRefGoogle Scholar
  41. Wan W-K, Millon L (2005) Poly(vinyl alcohol)-bacterial cellulose nanocomposite, US Patent 2005/0037082 AlGoogle Scholar
  42. Wang MX (2007) Method for preparing artificial dura mater of brain using bacterial cellulose, Chinese patent CN101053674Google Scholar
  43. Watase M, Nishinari K (1983) Anomalous rheological behaviour of poly(vinyl alcohol) gels. Polym Commun 24(9):270–273Google Scholar
  44. Watase M, Nishinari K (1988) Thermal and rheological properties of poly(vinylalchol) hydrogels prepared by repeated cycles of freezing and thawing. Makromol Chem 189(4):871–880CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Nanotechnology and Functional Materials, Department of Engineering SciencesUppsala UniversityUppsalaSweden

Personalised recommendations