Cellulose

, Volume 20, Issue 3, pp 1329–1342 | Cite as

Interplay of colloidal stability of cellulose nanocrystals and their dispersibility in cellulose acetate butyrate matrix

  • Leandro S. Blachechen
  • João Paulo de Mesquita
  • Everton Luiz de Paula
  • Fabiano V. Pereira
  • Denise F. S. Petri
Original Paper

Abstract

Cellulose nanocrystals (CNC) prepared from eucalyptus cellulose CNCs were modified by the reaction with methyl adipoyl chloride, CNCm, or with a mixture of acetic and sulfuric acid, CNCa. The CNC were either dispersed at 0.1 wt% in the pure solvents ethyl acetate (EA), tetrahydrofuran (THF) and dimethylformamide (DMF) or in cellulose acetate butyrate (CAB) solutions prepared in these solvents at 0.9 wt%. The colloidal behavior of these dispersions was systematically investigated using a phase separation analyzer LUMiReader®. The mechanical properties and morphological features of the films resulting from the mixtures of CAB and CNC were determined by dynamic mechanical analysis, optical microscopy and atomic force microscopy, respectively. Regardless the functional group attached to the surface of CNC, the best colloidal stability was observed for dispersions prepared in CAB/DMF solution. Higher degree of substitution of modified CNCs favored the colloidal stability in EA and THF. Composite films prepared from CAB/DMF solutions were more homogeneous and presented better mechanical performance than those prepared in CAB/EA or CAB/THF. The mechanical performance of composites and neat CAB prepared from DMF was CAB/CNCs > CAB/CNCm > CAB/CNCa > CAB, indicating that the modification weakens the percolation process, which is mediated by H bonding.

Keywords

Cellulose nanocrystals Cellulose acetate butyrate Colloidal stability Mechanical properties Morphology 

Abbreviations

CAB

Cellulose acetate butyrate

CNC

Cellulose nanocrystals

CNCs

Cellulose nanocrystals functionalized with sulfate groups

CNCa

Cellulose nanocrystals functionalized with sulfate and acetate groups

CNCm

Cellulose nanocrystals functionalized with sulfate and methyl adipoyl groups

EA

Ethyl acetate

THF

Tetrahydrofuran

DMF

N,N-dimethylformamide

DMA

Dynamic mechanical analysis

OM

Optical microscopy

AFM

Atomic force microscopy

DSa

Degree of substitution of acetate

DSBu

Degree of substitution of butyrate

DSm

Degree of substitution of methyl acetate

εr

Relative permittivity

CMC

Carboxymethylcellulose

XG

Xyloglucan

BCN

Bacterial cellulose nanocrystals

E

Young’s modulus

σ

Tensile strength

Supplementary material

10570_2013_9881_MOESM1_ESM.pdf (405 kb)
Supplementary material 1 (PDF 405 kb)

References

  1. Amim J Jr, Kosaka PM, Petri DFS (2008) Characteristics of thin cellulose ester films spin-coated from acetone and ethyl acetate solutions. Cellulose 15:527–535CrossRefGoogle Scholar
  2. Ayuk JE, Mathew AP, Oksman K (2009) The effect of plasticizer and cellulose nanowhisker on the dispersion and properties of cellulose acetate butyrate nanocomposites. J Appl Polym Sci 114:2723–2730CrossRefGoogle Scholar
  3. Azzam F, Heux L, Putaux JL, Jean B (2010) Preparation by grafting onto, characterization, and properties of thermally responsive polymer-decorated cellulose nanocrystals. Biomacromolecules 11:3652–3659CrossRefGoogle Scholar
  4. Besson F, Budtova T (2012) Cellulose ester-polyolefine binary blend: morphological, rheological and mechanical properties. Eur Polym J 48:981–989CrossRefGoogle Scholar
  5. Blachechen LS, Souza MA, Petri DFS (2012) Effect of humidity and solvent vapor phase on cellulose esters films. Cellulose 19:443–457CrossRefGoogle Scholar
  6. Braun B, Dorgan JR (2009) Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers. Biomacromolecules 10:334–341CrossRefGoogle Scholar
  7. Brito BSL, Pereira FV, Putaux JL, Jean B (2012) Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose 19:1527–1536CrossRefGoogle Scholar
  8. Cheung KP, Grover R, Wang Y, Gurkovich C, Wang G, Scheinbeim J (2005) Substrate effect on the thickness of spin-coated ultrathin polymer film. Appl Phys Lett 87:214103CrossRefGoogle Scholar
  9. Cui L, Ding Y, Li X, Wang Z, Han Y (2006) Solvent and polymer concentration effects on the surface morphology evolution of immiscible polystyrene/poly (methyl methacrylate) blends. Thin Solid Films 515:2038–2048CrossRefGoogle Scholar
  10. Dario AF, Macia HB, Petri DFS (2012) Nanostructures on spin-coated polymer films controlled by solvent composition and polymer molecular weight. Thin Solid Films 524:185–190CrossRefGoogle Scholar
  11. de Menezes AJ, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whisker reinforced polyethylene nanocomposites. Polymer 50:4552–4563CrossRefGoogle Scholar
  12. de Mesquita JP, Patricio PSO, Donnici CL, Petri DFS, Oliveira LC, Pereira FV (2011) Hybrid layer-by-layer assembly based on animal and vegetable structural materials: multilayered films of collagen and cellulose nanowhiskers. Soft Matter 7:4405–4413Google Scholar
  13. de Mesquita JP, Donnici CL, Teixeira IF, Pereira FV (2012) Bio-based nanocomposites obtained through covalent linkage between chitosan and cellulose nanocrystals. Carbohydr Polym 90:210–217CrossRefGoogle Scholar
  14. de Paula EL, Mano V, Pereira FV (2011) Influence of cellulose nanowhiskers on the hydrolytic degradation behavior of poly(d, l-lactide). Polym Degrad Stab 96:1631–1638CrossRefGoogle Scholar
  15. de Rodriguez NL, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261–270CrossRefGoogle Scholar
  16. Dimitriu S (2005) Polysaccharides—structural diversity and functional versatility. Marcel Dekker, New YorkGoogle Scholar
  17. Dufresne A (2010) Processing of polymer nanocomposites reinforced with polysaccharide nanocrystals. Molecules 15:4111–4128CrossRefGoogle Scholar
  18. Edgar KJ (2007) Cellulose esters in drug delivery. Cellulose 14:49–64CrossRefGoogle Scholar
  19. Edgar KJ, Buchanam CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26:1605–1688CrossRefGoogle Scholar
  20. Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303–315CrossRefGoogle Scholar
  21. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yaho H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33CrossRefGoogle Scholar
  22. García NL, Ribba L, Dufresne A, Aranguren MI, Goyanes S (2009) Physico-mechanical properties of biodegradable starch nanocomposites. Macromol Mater Eng 294:169–177CrossRefGoogle Scholar
  23. Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10:27–30CrossRefGoogle Scholar
  24. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRefGoogle Scholar
  25. Kalia S, Dufresne A, Cherian BM, Kaith BS, Avérous L, Njuguna J, Nassiopoulos E (2011) Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci Article ID 837875, 35 p. doi:10.1155/2011/837875
  26. Kim J, Montero G, Habibi Y, Hinestroza JP, Genzer J, Argyropoulos DS, Rojas OJ (2009) Dispersion of cellulose crystallites by nonionic surfactants in a hydrophobic polymer matrix. Polym Eng Sci 49:2054–2061CrossRefGoogle Scholar
  27. Kosaka PM, Kawano Y, Petri HM, Fantini MCA, Petri DFS (2007) Structure and properties of composites of polyethylene or maleated polyethylene and cellulose or cellulose esters. J Appl Polym Sci 103:402–411CrossRefGoogle Scholar
  28. Kosaka PM, Amim Jr J, Saito RSN, Petri DFS (2009) Thermodynamics of cellulose ester surfaces. In: Roman M (ed) Model cellulosic surfaces. ACS Symposium Series 1019. American Chemical Society, Washington, DC, v.1019, pp 223–241Google Scholar
  29. Lide DR (2004) CRC handbook chemistry and physics, 85th edn. CRC Press, Taylor and Francis, Boca Raton, FLGoogle Scholar
  30. Lin YC, Müler M, Binder K (2004) Stability of thin polymer films: influence of solvents. J Phys Chem 121:3816–3828CrossRefGoogle Scholar
  31. Müller-Buschbaum P, Gutmann JS, Wolkenhauer M, Kraus J, Stamm M, Smilgies D, Petry W (2001) Solvent-induced surface morphology of thin polymer films. Macromolecules 34:1369–1375CrossRefGoogle Scholar
  32. Petersson L, Mathew AP, Oksman K (2009) Dispersion and properties of cellulose nanowhiskers and layered silicates in cellulose acetate butyrate nanocomposites. J Appl Polym Sci 112:2001–2009CrossRefGoogle Scholar
  33. Petri DFS (2002) Characterization of spin-coated polymer films. J Braz Chem Soc 13:695–699CrossRefGoogle Scholar
  34. Petri DFS, Wenz G, Schunk P, Schimmel T (1999) An improved method for the assembly of amino-terminated monolayers on SiO2 and the vapor deposition of gold layers. Langmuir 15:4520–4523CrossRefGoogle Scholar
  35. Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432CrossRefGoogle Scholar
  36. Srinivasarao M, Collings D, Philips A, Patel S (2001) Three dimensionally ordered array of air bubbles in a polymer film. Science 292:79–83CrossRefGoogle Scholar
  37. Strawhecker KE, Kumar SK, Douglas JF, Karim A (2001) The critical role of solvent evaporation on the roughness of spin-cast polymer films. Macromolecules 34:4669–4672CrossRefGoogle Scholar
  38. Villanova J, Patricio PSO, Pereira FV, Oréfice RL (2011) Pharmaceutical acrylic beads obtained by suspension polymerization containing cellulose nanowhiskers as excipient for drug delivery. Eur J Pharm Sci 42:406–415CrossRefGoogle Scholar
  39. Walsh CB, Franses EI (2003) Ultrathin PMMA films spincoated from toluene solutions. Thin Solid Films 429:71–76CrossRefGoogle Scholar
  40. Winter HT, Cerclier C, Delorme N, Bizot H, Quemener B, Cathala B (2010) Improved colloidal stability of bacterial cellulose nanocrystal suspensions for the elaboration of spin-coated cellulose-based model surfaces. Biomacromolecules 11:3144–3151CrossRefGoogle Scholar
  41. Zhong L, Fu S, Peng X, Zhan H, Sun R (2012) Colloidal stability of negatively charged cellulose nanocrystalline in aqueous systems. Carbohydr Polym 90:644–649CrossRefGoogle Scholar
  42. Zoppe JO, Österberg M, Venditti RA, Laine J, Rojas OJ (2011) Surface interaction forces of cellulose nanocrystals grafted with thermoresponsive polymer brushes. Biomacromolecules 12:2788–2796CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Leandro S. Blachechen
    • 1
  • João Paulo de Mesquita
    • 2
  • Everton Luiz de Paula
    • 2
  • Fabiano V. Pereira
    • 2
  • Denise F. S. Petri
    • 1
  1. 1.Instituto de QuímicaUniversidade de São PauloSão PauloBrazil
  2. 2.Departamento de QuímicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations