, Volume 20, Issue 2, pp 919–931 | Cite as

Fluorescence labeling of gelatin and methylcellulose: monitoring their penetration behavior into paper

  • Eva Hummert
  • Ute Henniges
  • Antje Potthast
Original Paper


For the conservation of artworks on paper, powdery paint layers on the paper matrix are stabilized with dilute solutions of adhesives (0.25–1 %), commonly gelatin or methylcellulose, which are applied as aerosols. This technique allows non-contact application. The distribution of the adhesives must be carefully controlled: they have to be delivered to unstable paint layers in the right quantity to avoid visual alterations of the artwork during the stabilization treatment. To visualize the distribution of aerosol-misted adhesives in porous substrates, gelatin and methylcellulose were labeled with fluorescent dyes, purified from excess label, and applied on sample specimen featuring powdery pigment layers on handmade rag paper. As blank comparisons, sample papers without pigment layers were included to verify whether aerosol-misted adhesives are a suitable method to stabilize fragile papers. Penetration of the adhesive-label-conjugates was observed at thin sections of the samples by fluorescence microscopy. The fluorescence labeling of gelatin with Texas Red™ allowed an excellent visualization of aerosol-misted adhesive (0.5–1 %) in all sample types. Methylcellulose (Methocel™ A4C) labeled with Texas Red™ C2-dichlorotriazine enabled fluorescence tracing if applied in 0.5 % solutions by immersion. Aerosol application permitted local adhesive application, making it a suitable technique for stabilizing fragile papers. If applied to samples with low porosity, aerosol-misted gelatin was mainly deposited at the surface, whereas in porous filter paper, penetration dominated over surface deposition. Intermediate drying between repetitive applications apparently limited the penetration of aerosol-misted gelatin.


Fluorescence labeling Gelatin Methylcellulose Stabilization Pigment Paper Aerosols Penetration Size-exclusion chromatography 



The authors would like to thank Gerhard Banik (Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria), Irene Brückle, and Andrea Pataki (Staatliche Akademie der Bildenden Künste Stuttgart) for support and advice. For generously granting access to the rotary microtome and the fluorescence microscope, we would like to thank Marie-Theres Hauser (Department of Applied Genetics und Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria). We thank Sigrid Eyb-Green and Martina Pfenninger Lepage (Akademie der Bildenden Künste Wien) for lending the aerosol generator. Eva Hummert is grateful for the 2007–2009 financial support by the Baden-Württemberg Stiftung, formerly Landesstiftung Baden-Württemberg and the 2009–2011 Landesgraduiertenförderung at the Staatliche Akademie der Bildenden Künste Stuttgart.


  1. Ahlers M, Coester C, Zwiorek K, Zillies J (2006) DE102004041340A1 Nanopartikel und Verfahren zu deren HerstellungGoogle Scholar
  2. Banik G, Brückle I, Lacher R, Wegele G (2011) Effect of sizing on paper-water interactions. In: Banik G, Brückle I (eds) Paper and water: a guide for conservators. Elsevier, Oxford, pp 145–172Google Scholar
  3. Barrett T (1989) Early European papers/contemporary conservation papers: a report on research undertaken from fall 1984 through fall 1987. Pap Conserv 13:3–108CrossRefGoogle Scholar
  4. Brinkley M (1992) A brief survey of methods for preparing protein conjugates with dyes, haptens, and cross-linking reagents. Bioconjugate Chem 3:2–13CrossRefGoogle Scholar
  5. Dauwe C, Reinhold G, Gores F (2001) Chromatographische Qualitätskontrollen an Gelatinen. Chem Lab Biotech 52:334–337Google Scholar
  6. Dierks-Staiger R (1996) Anwendung von Aerosolen zur Konsolidierung von Gouachemalerei auf Papier. Weiße Reihe des Instituts für Museumskunde, vol 14. Staatliche Akademie der Bildenden Künste, StuttgartGoogle Scholar
  7. Dupont A-L (2003) Gelatine sizing of paper and its impact on the degradation of cellulose during aging: a study using size-exclusion chromatography. Dissertation, Universiteit van AmsterdamGoogle Scholar
  8. Garlick K (1986) A brief review of the history of sizing and resizing practices. Book Pap Group Annu 5:94–107Google Scholar
  9. Haugland RP (2002) Handbook of fluorescent probes and research products. Molecular Probes, EugeneGoogle Scholar
  10. Hermanson GT (2008) Bioconjugate techniques. Academic Press, San Diego, pp 173, 200, 423–425Google Scholar
  11. Horie V (2010) Materials in conservation. Elsevier, Amsterdam, p 107Google Scholar
  12. Invitrogen (2007) Amine-reactive probes. Application note MP 00143, pp 1–9Google Scholar
  13. Keary CM (2001) Characterization of METHOCEL cellulose ethers by aqueous SEC with multiple detectors. Carbohydr Polym 45:293–303CrossRefGoogle Scholar
  14. Kessler A, Blüher A, Banik G (1998) Aerosole für die Konsolidierung pudriger Malschichten auf Papier. In: Banik G (ed) Studiengang Restaurierung von Graphik, Archiv- und Bibliotheksgut, Projekte, Diplomarbeiten. Semesterarbeiten, Stuttgart, p 16Google Scholar
  15. Michalski S, Dignard C (1997) Ultrasonic misting. Part 1, Experiments on appearance change and improvement in bonding. JAIC 36:109–126Google Scholar
  16. Nairn RC (1969) Fluorescent protein tracing. Churchill Livingstone, Edinburgh, p 27Google Scholar
  17. Nordmark TS, Ziegler GR (2000) Quantitative assessment of phase composition and morphology of two-phase gelatin-pectin gels using fluorescence microscopy. Food Hydrocoll 14:579–590CrossRefGoogle Scholar
  18. Pataki A (2006) Einflussgrößen auf den Farbeindruck von pudernden Malschichten beim Konsolidieren mit Aerosolen. Dissertation, Staatliche Akademie der Bildenden Künste StuttgartGoogle Scholar
  19. Plesters J (1956) Cross sections and chemical analysis of paint samples. Stud Conserv 2:110–157CrossRefGoogle Scholar
  20. Ream JD (1995) Observations on the penetration of two consolidants applied to insecure gouache on paper. Book Pap Group Annu 14:27–140Google Scholar
  21. Röhrling J, Potthast A, Rosenau T, Lange T, Ebner G, Sixta H, Kosma P (2002) A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 1. Method development. Biomacromolecules 3:959–968CrossRefGoogle Scholar
  22. Rouchon V, Pellizzi E, Janssens K (2010) FTIR techniques applied to the detection of gelatine in paper artifacts: from macroscopic to microscopic approach. Appl Phys A 100:663–669CrossRefGoogle Scholar
  23. Schramm H-P, Hering B (1988) Historische Malmaterialien und ihre Identifizierung. Akademische Druck- und Verlagsgesellschaft, GrazGoogle Scholar
  24. Soppa K, Laaser T, Krekel C (2011) Visualizing the penetration of adhesives using fluorescent labelling. In: Proceedings of the symposium in adhesives and consolidants for conservation, Ottawa 2011. Canadian Conservation Institute, pp 1–18Google Scholar
  25. Wolbers R (2000) Cleaning painted surfaces: aqueous methods. Archetype, LondonGoogle Scholar
  26. Wolbers R, Landrey G (1987) The use of direct reactive fluorescent dyes for the characterization of binding media in cross sectional examinations. Preprints of papers presented at the fifteenth annual meeting Vancouver 1987. American Institute of Conservation, pp 168–204Google Scholar
  27. Wu C-S (1995) Handbook of size-exclusion chromatography. Marcel Dekker, New York, p 96Google Scholar
  28. Zhao C, Furukawa S, Ohki Y (2009) A novel collagenase-assisted extraction of active pharmaceutical ingredients from gelatin products for quantitative analysis by high performance liquid chromatography. J Chromatogr A 1216:4524–4528CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Staatliche Akademie der Bildenden Künste StuttgartKonservierung und Restaurierung von Graphik, Archiv- und BibliotheksgutFellbachGermany
  2. 2.Department of ChemistryChristian-Doppler Laboratory “Advanced Cellulose Chemistry and Analytics”Tulln an der DonauAustria

Personalised recommendations