Cellulose

, Volume 20, Issue 2, pp 953–961 | Cite as

Effect of plasma treatment on cellulose fiber

  • K. Kolářová
  • V. Vosmanská
  • S. Rimpelová
  • V. Švorčík
Original Paper

Abstract

Cotton cellulose fibers were modified in inert plasma. Surface morphology of the modified fibers was studied by SEM and changes in the surface composition by XPS and FTIR. Standard goniometry was used for determination of contact angle as a function of modified fiber aging. Absorptivity of modified fibers was determined by gravimetry and fiber width in physiological solution, simulating body liquids, by confocal microscopy. Antibacterial effect of pristine and plasma treated samples was examined by following growth of Escherichia coli. Plasma treatment led to surface ablation, changes in surface morphology and fiber width. Surface of the plasma modified fibers was oxidized and their water absorptivity was reduced. The plasma modification did not affect E. coli growth substantially.

Keywords

Cotton fabric Cellulose Plasma treatment Surface chemical analysis Surface morphology E. coli 

Notes

Acknowledgments

This work was supported by the GA CR under the project P108/12/1168.

References

  1. Calvimontes A, Mauersberger P, Nitschke M, Dutschk V, Simon F (2011) Effects of oxygen plasma on cellulose surface. Cellulose 18(3):803–809CrossRefGoogle Scholar
  2. Coseri S, Biliuta G, Simionescu BC, Stana-Kleinchek K, Ribitsch V, Harabagiu V (2012) Oxidized cellulose—Survey of the most recent achievements. Carbohydr Polym. http://dx.doi.org/10.1016/j.carbpol.2012.03.086
  3. Havelka P, Hnatowicz V, Suchý P, Milichovský M, Švorčík V (2010) Chemistry, technology and applications of oxidized celluloses. In: Lejeune A, Deprez T (eds) Cellulose: structure and properties, derivatives and industrial uses. Nova Science Publishers, Inc., New York, pp 205–257Google Scholar
  4. Hegemann D, Brunner H, Oehr C (2003) Plasma treatment of polymers for surface and adhesion improvement. Nucl Instrum Methods Phys Res Sect B 208:281–286CrossRefGoogle Scholar
  5. Ibrahim NA, Eid BM, Youssef MA, El-Sayed SA, Salah AM (2012) Functionalization of cellulose-containing fabrics by plasma and subsequent metal salt treatments. Carbohydr Polym 90:908–914CrossRefGoogle Scholar
  6. Kafi AA, Magniez K, Fox BL (2011) A surface-property relationship of atmospheric plasma treated jute composites. Compos Sci Technol 71(15):1692–1698CrossRefGoogle Scholar
  7. Karahan H, Özdoğan E (2008) Improvements of surface functionality of cotton fibers by atmospheric plasma treatment. Fibers Polym 9(1):21–26CrossRefGoogle Scholar
  8. Karmakar SR (1999) Chemical technology in the pre-treatment processes of textiles, 1st edn. Elsevier Science, AmsterdamGoogle Scholar
  9. Kittinaovarat S, Hengprapakron N, Janvikul W (2012) Comparative multifunctional properties of partially carboxymethylated cotton gauze treated by the exhaustion or pad-dry-cure methods. Carbohydr Polym 87(1):16–23CrossRefGoogle Scholar
  10. Kotál V, Švorčík V, Slepička P, Sajdl P, Bláhová O, Šutta O, Hnatowitcz V (2007) Gold coating of poly(ethylene terephthalate) modified by argon plasma. Plasma Process Polym 4(1):69–76CrossRefGoogle Scholar
  11. Liu S, Hu M, Zeng HT, Wu R, Jiang R, Wei J, Wang L, Kong J, Chen Y (2012) Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Langmuir 28(33):12364–12372CrossRefGoogle Scholar
  12. Marmur A (2006) Soft contact: measurement and interpretation of contact angles. Soft Matter 2(1):12–17CrossRefGoogle Scholar
  13. Mikulíková R, Švorčík V, Náhlík J, Sopuch T, Havelka P (2008) Cytocompatibility of surface ground PE doped with calcium salt of 6-carboxycellulose. Cellulose 15(3):473–479CrossRefGoogle Scholar
  14. Nithya E, Radhai R, Rajendran R, Shalinia S, Rajendran V, Jayakumar S (2010) Synergetic effect of DC air plasma and cellulase enzyme treatment on the hydrophilicity of cotton fabric. Carbohydr Polym 83(4):1652–1658CrossRefGoogle Scholar
  15. Peréz S, Samain D (2010) Structure and engineering of celluloses. Carbohydr Polym 64(1):25–116Google Scholar
  16. Poll HU, Schladitz U, Schreiter S (2001) Penetration of plasma effects into textile structures. Surf Coat Technol 142–144:489–493CrossRefGoogle Scholar
  17. Řezníčková A, Kolská Z, Hnatowicz V, Stopka P, Švorčík V (2011) Comparison of glow argon plasma-induced surface changes of thermoplastic polymers. Nucl Instrum Phys Res Sect B 269(2):83–88CrossRefGoogle Scholar
  18. Špérová M (2010) Ageing of cotton fabric as determined from polymerization degree change. Thesis, Brno University of TechnologyGoogle Scholar
  19. Sun S, Suna J, Yao L, Qiu Y (2011) Wettability and sizing property improvement of raw cotton yarns treated with He/O2 atmospheric pressure plasma jet. Appl Surf Sci 257(6):2377–2382CrossRefGoogle Scholar
  20. Švorčík V, Hnatowicz V (2007) Properties of polymers modified by plasma discharge and ion beam. In: Albertov LB (ed) Polymer degradation and stability. Nova Sci Publ, New York, pp 171–216Google Scholar
  21. Švorčík V, Kolářová K, Slepička P, Macková A, Novotná M, Hnatowicz V (2006) Modification of surface properties of high and low density polyethylene by Ar plasma discharge. Polym Degrad Stab 91(6):1219–1225CrossRefGoogle Scholar
  22. Švorčík V, Kotál V, Siegel J, Sajdl P, Macková A, Hnatowicz V (2007) Ablation and water etching of poly(ethylene) modified by argon plasma. Polym Degrad Stab 92(9):1645–1649CrossRefGoogle Scholar
  23. Švorčík V, Chaloupka A, Záruba K, Král V, Bláhová O, Macková A, Hnatowicz V (2009) Deposition of gold nano-particles and nano-layers on polyethylene modified by plasma discharge and chemical treatment. Nucl Instrum Phys Res Sect B 267(15):2484–2488CrossRefGoogle Scholar
  24. Švorčík V, Řezníčková A, Sajdl P, Kolská Z, Makajová Z, Slepička P (2011) Au nanoparticles grafted on plasma treated polymers. J Mater Sci 46(24):7917–7922CrossRefGoogle Scholar
  25. Thorvaldsson A, Edvinsson P, Glantz A, Rodriguez K, Walkenström P, Gatenholm P (2012) Superhydrophobic behaviour of plasma modified electrospun cellulose nanofiber-coated microfibers. Cellulose 19(5):1743–1748CrossRefGoogle Scholar
  26. Topalovic T, Nierstrasz AV, Bautista L, Jocic D, Navarro A, Warmoeskerken MCGM (2007) XPS and contact angle study of cotton surface oxidation by catalytic bleaching. Colloids Surf 296(3):76–85CrossRefGoogle Scholar
  27. Vaideki K, Jayakumar S, Rajendran R, Thilagavathi G (2007) Investigation on the effect of RF air plasma and neem leaf extract treatment on the surface modification and antimicrobial activity of cotton fabric. Appl Surf Sci 254(8):2472–2478CrossRefGoogle Scholar
  28. Vander Wielen LC, Östenson M, Gatenholm P, Ragauskas AJ (2006) Surface modification of cellulosic fibers using dielectric-barrier discharge. Carbohydr Polym 65(2):179–184CrossRefGoogle Scholar
  29. Vesel A, Mozetic M, Strnad S, Peršin Z, Stana-Kleincheck K, Hauptman N (2010) Plasma modification of viscose textile. Vacuum 84(1):79–82CrossRefGoogle Scholar
  30. Xiaolin Y, Shengrui T, Maofa G, Junchao Z (2012) Removal of fluoride from drinking water by cellulose@ hydroxyapatite nanocomposites. Carbohydr Polym 92(1):269–275Google Scholar
  31. Zhou Y, Ma C, Wang Y, Zhang Q-M, Zhang Y-Y, Fu J, Gao H, Zhao L-X (2012) High performance liquid chromatographic separation of thirteen drugs collected in Chinese Pharmacopoeia 2010(Ch.P2010) on cellulose ramification chiral stationary phase. J Pharma Anal 2(1):48–55CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • K. Kolářová
    • 1
  • V. Vosmanská
    • 1
  • S. Rimpelová
    • 2
  • V. Švorčík
    • 1
  1. 1.Department of Solid State EngineeringInstitute of Chemical Technology, PraguePragueCzech Republic
  2. 2.Department of Biochemistry and MicrobiologyInstitute of Chemical Technology, PraguePragueCzech Republic

Personalised recommendations