, Volume 21, Issue 1, pp 357–366 | Cite as

Thermo-responsive superhydrophobic paper using nanostructured cellulose stearoyl ester

  • Andreas Geissler
  • Florian Loyal
  • Markus Biesalski
  • Kai ZhangEmail author
Original Paper


Hydrophilic paper was rendered with hydrophobic and superhydrophobic property after the treatment with solutions and nanoparticles of cellulose stearoyl ester (CSE), respectively. Cellulose stearoyl ester with a degree of substitution of 2.99 was synthesized from cellulose using stearoyl chloride. By dip-coating paper in CSE solution of at least 3 mg/ml in toluene, paper became hydrophobic with stable water contact angles of more than 120°. After further spray-coating using CSE nanoparticles that were prepared from CSE solution via nanoprecipitation, paper surface became superhydrophobic with water contact angles of larger than 150°. These superhydrophobic surfaces also exhibited self-cleaning character. Furthermore, the superhydrophobic paper surfaces showed a temperature-responsive character and could be turned hydrophobic after a heat-treatment at 70 °C for 5 min.


Paper Superhydrophobic Cellulose Stearoyl ester Thermo-responsive 



The financial support from LOEWE–Cluster Soft Control is gratefully acknowledged. We thank Prof. Jörg Schneider for the access to Nanosizer S. Dr. Longquan Chen is acknowledged for the kind support by the measurement of advancing and receding angles.

Supplementary material

Supplementary material 1 (WMV 302 kb)

Supplementary material 2 (WMV 302 kb)

10570_2013_160_MOESM3_ESM.wmv (154 kb)
Supplementary material 3 (WMV 153 kb)

Supplementary material 4 (WMV 302 kb)


  1. Arbatan T, Zhang L, Fang X-Y, Shen W (2012) Cellulose nanofibers as binder for fabrication of superhydrophobic paper. Chem Eng J 210:74–79CrossRefGoogle Scholar
  2. Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223(4633):283–285CrossRefGoogle Scholar
  3. Balu B, Breedveld V, Hess DW (2008) Fabrication of “roll-off” and “sticky” superhydrophobic cellulose surfaces via plasma processing. Langmuir 24(9):4785–4790CrossRefGoogle Scholar
  4. Balu B, Berry AD, Hess DW, Breedveld V (2009) Patterning of superhydrophobic paper to control the mobility of micro-liter drops for two-dimensional lab-on-paper applications. Lab Chip 9(21):3066–3075CrossRefGoogle Scholar
  5. Barona D, Amirfazli A (2011) Producing a superhydrophobic paper and altering its repellency through ink-jet printing. Lab Chip 11(5):936–940CrossRefGoogle Scholar
  6. Barthel S, Heinze T (2006) Acylation and carbanilation of cellulose in ionic liquids. Green Chem 8(3):301–306CrossRefGoogle Scholar
  7. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1):1–8CrossRefGoogle Scholar
  8. Bayer IS, Fragouli D, Attanasio A, Sorce B, Bertoni G, Brescia R, Di Corato R, Pellegrino T, Kalyva M, Sabella S, Pompa PP, Cingolani R, Athanassiou A (2011) Water-repellent cellulose fiber networks with multifunctional properties. ACS Appl Mater Interfaces 3(10):4024–4031CrossRefGoogle Scholar
  9. Buchanan CM, Hyatt JA, Lowman DW (1987) Two-dimensional NMR of polysaccharides: spectral assignments of cellulose triesters. Macromolecules 20(11):2750–2754CrossRefGoogle Scholar
  10. Chitnis G, Ziaie B (2012) Waterproof active paper via laser surface micropatterning of magnetic nanoparticles. ACS Appl Mater Interfaces 4(9):4435–4439CrossRefGoogle Scholar
  11. Feng L, Li SH, Li YS, Li HJ, Zhang LJ, Zhai J, Song YL, Liu BQ, Jiang L, Zhu DB (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14(24):1857–1860CrossRefGoogle Scholar
  12. Fischer P, Brooks CF, Fuller GG, Ritcey AM, Xiao YF, Rahem T (2000) Phase behavior and flow properties of “hairy-rod” monolayers. Langmuir 16(2):726–734CrossRefGoogle Scholar
  13. García-Ayuso G, Roberto S, Martinez-Duart JM, Sánchez O, Vázquez L (1997) Effect of surface fractality on the permeability of transparent gas barrier coatings. Adv Mater 9:654–658CrossRefGoogle Scholar
  14. Garnier G, Wright J, Godbout L, Yu L (1998) Wetting mechanism of alkyl ketene dimers on cellulose films. Colloid Surf A 145(1–3):153–165CrossRefGoogle Scholar
  15. Geissler A, Chen L, Zhang K, Bonaccurso E, Biesalski M (2013) Superhydrophobic surfaces fabricated from nano- and microstructured cellulose stearoyl esters. Chem Commun 49(43):4962–4964CrossRefGoogle Scholar
  16. Granström M, née Pääkkö MK, Jin H, Kolehmainen E, Kilpeläinen I, Ikkala O (2011) Highly water repellent aerogels based on cellulose stearoyl esters. Polym Chem 2(8):1789–1796CrossRefGoogle Scholar
  17. Heinze T, Liebert TF, Pfeiffer KS, Hussain MA (2003) Unconventional cellulose esters: synthesis, characterization and structure: property relations. Cellulose 10(3):283–296CrossRefGoogle Scholar
  18. Hornig S, Heinze T (2008) Efficient approach to design stable water-dispersible nanoparticles of hydrophobic cellulose esters. Biomacromolecules 9(5):1487–1492CrossRefGoogle Scholar
  19. Huang L, Chen K, Lin C, Yang R, Gerhardt RA (2010) Fabrication and characterization of superhydrophobic high opacity paper with titanium dioxide nanoparticles. J Mater Sci 46(8):2600–2605CrossRefGoogle Scholar
  20. Hussain MA, Liebert T, Heinze T (2004) Acylation of cellulose withN, N′-carbonyldiimidazole-activated acids in the novel solvent dimethyl sulfoxide/tetrabutylammonium fluoride. Macromol Rapid Commun 25(9):916–920CrossRefGoogle Scholar
  21. Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry, 1st edn. Wiley, WeinheimCrossRefGoogle Scholar
  22. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44(22):3358–3393CrossRefGoogle Scholar
  23. Kulterer MR, Reischl M, Reichel VE, Hribernik S, Wu M, Köstler S, Kargl R, Ribitsch V (2011) Nanoprecipitation of cellulose acetate using solvent/nonsolvent mixtures as dispersive media. Colloid Surf Physicochem Eng Aspect 375(1–3):23–29CrossRefGoogle Scholar
  24. Kulterer MR, Reichel VE, Kargl R, Köstler S, Sarbova V, Heinze T, Stana-Kleinschek K, Ribitsch V (2012) Functional polysaccharide composite nanoparticles from cellulose acetate and potential applications. Adv Funct Mater 22(8):1749–1758CrossRefGoogle Scholar
  25. Lai Y-K, Chen Z, Lin C-J (2011) Recent progress on the superhydrophobic surfaces with special adhesion: from natural to biomimetic to functional. J Nanoeng Nanomanuf 1(1):18–34CrossRefGoogle Scholar
  26. Lindström T, Larsson PT (2008) Alkyl ketene dimer (AKD) sizing: a review. Nord Pulp Pap Res J 23:202–209CrossRefGoogle Scholar
  27. Malmström E, Carlmark A (2012) Controlled grafting of cellulose fibres: an outlook beyond paper and cardboard. Polym Chem 3(7):1702–1713CrossRefGoogle Scholar
  28. Nikolajski M, Wotschadlo J, Clement JH, Heinze T (2012) Amino-functionalized cellulose nanoparticles: preparation, characterization, and interactions with living cells. Macromol Biosci 12(7):920–925CrossRefGoogle Scholar
  29. Samaranayake G, Glasser WG (1993) Cellulose derivatives with low DS. I A novel acylation system. Carbohydr Polym 22:1–7CrossRefGoogle Scholar
  30. Schenzel K, Fischer S (2001) NIR FT Raman spectroscopy: a rapid analytical tool for detecting the transformation of cellulose polymorphs. Cellulose 8(1):49–57CrossRefGoogle Scholar
  31. Sealey JE, Samaranayake G, Todd JG, Glasser WG (1996) Novel cellulose derivatives. IV. Preparation and thermal analysis of waxy esters of cellulose. J Polym Sci B Polym Phys 34:1613–1620CrossRefGoogle Scholar
  32. Seoud OA, Heinze T (2005) Organic esters of cellulose: new perspectives for old polymers. Adv Polym Sci 186:103–149CrossRefGoogle Scholar
  33. Socrates G (2001) Infrared and Raman characteristic group frequencies, 3rd edn. Wiley, EnglandGoogle Scholar
  34. Vaca-Garcia C, Borredon ME, Gaseta A (2001) Determination of the degree of substitution (DS) of mixed cellulose esters by elemental analysis. Cellulose 8(3):225–231CrossRefGoogle Scholar
  35. Vaca-Garcia C, Gozzelino G, Glasser WG, Borredon ME (2003) Dynamic mechanical thermal analysis transitions of partially and fully substituted chellulose fatty esters. J Poly Sci B Poly Phys 41:281–288CrossRefGoogle Scholar
  36. Wang PL, Tao BY (1994) Synthesis and characterization of long-chain fatty-acid cellulose ester (face). J Appl Polym Sci 52(6):755–761CrossRefGoogle Scholar
  37. Werner O, Quan C, Turner C, Pettersson B, Wågberg L (2009) Properties of superhydrophobic paper treated with rapid expansion of supercritical CO2 containing a crystallizing wax. Cellulose 17(1):187–198CrossRefGoogle Scholar
  38. Yang H, Deng Y (2008) Preparation and physical properties of superhydrophobic papers. J Colloid Interface Sci 325(2):588–593CrossRefGoogle Scholar
  39. Zugenmaier P (2008) Crystalline cellulose and cellulose derivatives: characterization and structures, 1st edn. Springer, HeidelbergCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Andreas Geissler
    • 1
  • Florian Loyal
    • 1
  • Markus Biesalski
    • 1
  • Kai Zhang
    • 1
    Email author
  1. 1.Institute of Macromolecular Chemistry and Paper ChemistryTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations