, Volume 21, Issue 2, pp 863–871 | Cite as

Size, shape, and arrangement of native cellulose fibrils in maize cell walls

  • Shi-You DingEmail author
  • Shuai Zhao
  • Yining Zeng
Original Paper


Higher plant cell walls are the major source of the cellulose used in a variety of industries. Cellulose in plant forms nanoscale fibrils that are embedded in non-cellulosic matrix polymers in the cell walls. The morphological features of plant cellulose fibrils such as the size, shape, and arrangement, are still poorly understood due to its inhomogeneous nature and the limited resolution of the characterization techniques used. Here, we sketch out a proposed model of plant cellulose fibril and its arrangement that is based primarily on review of direct visualizations of different types of cell walls in maize using atomic force microscopy at sub-nanometer scale, and is also inspired by recent advances in understanding of cellulose biosynthesis and biodegradation. We propose that the principal unit of plant cellulose fibril is a 36-chain cellulose elementary fibril (CEF), which is hexagonally shaped and 3.2 × 5.3 nm in cross-section. Macrofibrils are ribbon-like bundles containing variable numbers of CEFs associated through their hydrophilic faces. As the cell expands and/or elongates, large macrofibril may split to become smaller bundles or individual CEFs, which are simultaneously coated with hemicelluloses to form microfibrils of variable sizes during biosynthesis. The microfibrils that contain one CEF are arranged nearly parallel, and the hydrophobic faces of the CEF are perpendicular to the cell wall surface. Structural disordering of the CEF may occur during plant development while cells expand, elongate, dehydrate, and die, as well as during the processing to prepare cellulose materials.


Cellulose elementary fibril (CEF) Macrofibril Microfibril Plant cell wall Atomic Force Microscopy 



We acknowledge research support from the BioEnergy Science Center, a DOE Bioenergy Research Center, and the Genomic Science Program (ER65258), both supported by the Office of Biological and Environmental Research in the DOE Office of Science.


  1. Burton RA, Shirley NJ, King BJ, Harvey AJ, Fincher GB (2004) The CesA gene family of barley: quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiol 134(1):224–236. doi: 10.1104/pp.103.032904 CrossRefGoogle Scholar
  2. Castro MA (1991) Ultrastructure of vestures on the vessel wall in some species of Prosopis (Leguminosae–Mimosoideae). IAWA Bull 12(4):425–430CrossRefGoogle Scholar
  3. Dagel DJ, Liu YS, Zhong LL, Luo YH, Himmel ME, Xu Q, Zeng YN, Ding SY, Smith S (2011) In situ imaging of single carbohydrate-binding modules on cellulose microfibrils. J Phys Chem B 115(4):635–641. doi: 10.1021/Jp109798p CrossRefGoogle Scholar
  4. Ding SY, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54(3):597–606. doi: 10.1021/jf051851z CrossRefGoogle Scholar
  5. Ding SY, Liu YS, Zeng YN, Himmel ME, Baker JO, Bayer EA (2012) How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338(6110):1055–1060. doi: 10.1126/science.1227491 CrossRefGoogle Scholar
  6. Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP (2002) Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol 43(12):1407–1420. doi: 10.1093/Pcp/Pcf164 CrossRefGoogle Scholar
  7. Donaldson L (2007) Cellulose microfibril aggregates and their size variation with cell wall type. Wood Sci Technol 41(5):443–460. doi: 10.1007/s00226-006-0121-6 CrossRefGoogle Scholar
  8. Esau K (1977) Anatomy of Seed Plants. Wiley, New YorkGoogle Scholar
  9. Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci USA 108(47):E1195–E1203. doi: 10.1073/pnas.1108942108 CrossRefGoogle Scholar
  10. Gritsch CS, Murphy RJ (2005) Ultrastructure of fibre and parenchyma cell walls during early stages of culm development in Dendrocalamus asper. Ann Bot 95(4):619–629. doi: 10.1093/Aob/Mic068 CrossRefGoogle Scholar
  11. Kimura S, Laosinchai W, Itoh T, Cui XJ, Linder CR, Brown RM (1999) Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. Plant Cell 11(11):2075–2085. doi: 10.2307/3871010 CrossRefGoogle Scholar
  12. Kirby AR, Gunning AP, Waldron KW, Morris VJ, Ng A (1996) Visualization of plant cell walls by atomic force microscopy. Biophys J 70(3):1138–1143CrossRefGoogle Scholar
  13. Li SD, Lei L, Somerville CR, Gu Y (2012) Cellulose synthase interactive protein 1 (CSI1) links microtubules and cellulose synthase complexes. Proc Natl Acad Sci USA 109(1):185–190. doi: 10.1073/pnas.1118560109 CrossRefGoogle Scholar
  14. Macadam JW, Nelson CJ (2002) Secondary cell wall deposition causes radial growth of fibre cells in the maturation zone of elongating tall fescue leaf blades. Ann Bot 89(1):89–96. doi: 10.1093/aob.2002.mcf010 CrossRefGoogle Scholar
  15. Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55(4):241–249. doi: 10.1007/s10086-009-1029-1 CrossRefGoogle Scholar
  16. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082CrossRefGoogle Scholar
  17. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα, from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306. doi: 10.1021/Ja037055w CrossRefGoogle Scholar
  18. Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312(5779):1491–1495. doi: 10.1126/science.1126551 CrossRefGoogle Scholar
  19. Sampathkumar A, Gutierrez R, McFarlane HE, Bringmann M, Lindeboom J, Emons AM, Samuels L, Ketelaar T, Ehrhardt DW, Persson S (2013) Patterning and lifetime of plasma membrane localized cellulose synthase is dependent on actin organization in Arabidopsis interphase cells. Plant Physiol 162(2):675–688. doi: 10.1104/pp.113.215277 CrossRefGoogle Scholar
  20. Saxena IM, Brown RM (2005) Cellulose biosynthesis: current views and evolving concepts. Ann Bot 96(1):9–21. doi: 10.1093/Aob/Mci155 CrossRefGoogle Scholar
  21. Simon I, Glasser L, Scheraga HA, Manley RS (1988) Structure of cellulose.2: low-energy crystalline arrangements. Macromolecules 21(4):990–998. doi: 10.1021/Ma00182a025 CrossRefGoogle Scholar
  22. Thomas LH, Forsyth VT, Sturcova A, Kennedy CJ, May RP, Altaner CM, Apperley DC, Wess TJ, Jarvis MC (2013) Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiol 161(1):465–476. doi: 10.1104/pp.112.206359 CrossRefGoogle Scholar
  23. Toba K, Yamamoto H, Yoshida M (2013) Crystallization of cellulose microfibrils in wood cell wall by repeated dry-and-wet treatment, using X-ray diffraction technique. Cellulose 20(2):633–643. doi: 10.1007/s10570-012-9853-7 CrossRefGoogle Scholar
  24. Yin YB, Huang JL, Xu Y (2009) The cellulose synthase superfamily in fully sequenced plants and algae. BMC Plant Biol 9. doi: 10.1186/1471-2229-9-99
  25. Zeng YN, Zhao S, Yang S, Ding SY (2014) Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Curr Opin Biotechnol 27:38–45. doi: 10.1016/j.copbio.2013.09.008 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2013

Authors and Affiliations

  1. 1.National Renewable Energy LaboratoryBiosciences CenterGoldenUSA

Personalised recommendations