, Volume 21, Issue 1, pp 417–432 | Cite as

Isolation and characterization of cellulose nanofibers from banana peels

  • Franciele Maria PelissariEmail author
  • Paulo José do Amaral Sobral
  • Florencia Cecilia Menegalli
Original Paper


Cellulose nanofibers were isolated from banana peel using a combination of chemical treatments, such as alkaline treatment, bleaching, and acid hydrolysis. The suspensions of chemically treated fibers were then passed through a high-pressure homogenizer 3, 5, and 7 times, to investigate the effect of the number of passages on the properties of the resulting cellulose nanofibers. The cellulose nanofibers isolated in this study had a dry basis yield of 5.1 %. Transmission electron microscopy showed that all treatments effectively isolated banana fibers in the nanometer scale. The micrographs of the process steps used to isolate the nanofibers revealed gradual removal of amorphous components. Increasing number of passages in the homogenizer shortened the cellulose nanofibers while furnishing more stable aqueous suspensions with zeta potential values ranging from −16.1 to −44.1 mV. All the samples presented aspect ratio in the range of long nanofibers, hence being potentially applicable as reinforcing agents in composites. X-ray diffraction studies revealed that homogenized nanofiber suspensions were more crystalline than non-homogenized suspensions. Fourier transform infrared spectroscopy confirmed that alkaline treatment and bleaching removed most of the hemicellulose and lignin components present in the banana fibers. Thermal analyses revealed that the developed nanofibers exhibit enhanced thermal properties. In general, the nanoparticles isolated from the banana peel have potential application as reinforcing elements in a variety of polymer composite systems.


Banana peel Cellulose nanofibers High-pressure homogenizer Morphology Crystallinity studies 



The authors would like to acknowledge the financial support provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The authors would also like to acknowledge Margarita María Andrade-Mahecha for her contribution and guidance during this work.


  1. Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16(6):1017–1023CrossRefGoogle Scholar
  2. Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8(10):3276–3278CrossRefGoogle Scholar
  3. Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68(2):557–565CrossRefGoogle Scholar
  4. Andrade-Mahecha MM (2011) Microcomposites, nanocomposites and edible coatings based on biodegradable materials from Canna indica L. PhD thesis, University of CampinasGoogle Scholar
  5. Ball R, McIntosh AC, Brindley J (2004) Feedback processes in cellulose thermal decomposition: implications for fire-retarding strategies and treatments. Combust Theory Model 8(2):281–291CrossRefGoogle Scholar
  6. Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compos 24(12):1259–1268CrossRefGoogle Scholar
  7. Bhattacharya D, Germinario LT, Winter WT (2008) Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydr Polym 73(3):371–377CrossRefGoogle Scholar
  8. Bondeson D, Oksman K (2007) Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Compos Interfaces 14(7–9):617–630CrossRefGoogle Scholar
  9. Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2):171–180CrossRefGoogle Scholar
  10. Bouaouina H, Desrumaux A, Loisel C, Legrand J (2006) Functional properties of whey proteins as affected by dynamic high-pressure treatment. Int Dairy J 16(4):275–284CrossRefGoogle Scholar
  11. Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18(2):433–442CrossRefGoogle Scholar
  12. Cherian BM, Pothan LA, Nguyen-Chung T, Mennig G, Kottaisamy M, Thomas S (2008) A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization. J Agric Food Chem 56(14):5617–5627CrossRefGoogle Scholar
  13. Cherian BM, Leão AL, Souza SF, Costa LMM, Olyveira GM, Kottaisamy M, Nagarajan ER, Thomas S (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibres for medical applications. Carbohydr Polym 86(4):1790–1798CrossRefGoogle Scholar
  14. De Moura MR, Avena-Bustillos RJ, McHugh TH, Wood DF, Otoni CG, Mattoso LHC (2011) Miniaturization of cellulose fibers and effect of addition on the mechanical and barrier properties of hydroxypropyl methylcellulose films. J Food Eng 104(1):154–160CrossRefGoogle Scholar
  15. De Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25(7):771–787CrossRefGoogle Scholar
  16. Deepa B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA, Leao AL, De Souza SF, Kottaisamy M (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102(2):1988–1997CrossRefGoogle Scholar
  17. Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1):19–32CrossRefGoogle Scholar
  18. Duchesne I, Hult EL, Molin U, Daniel G, Iversen T, Lennholm H (2001) The influence of hemicellulose on fibril aggregation of kraft pulp fibers as revealed by FE-SEM and CP/MAS 13C-NMR. Cellulose 8(2):103–111CrossRefGoogle Scholar
  19. Dufresne A, Vignon MR (1998) Improvement of starch film performances using cellulose microfibrils. Macromolecules 31(8):2693–2696CrossRefGoogle Scholar
  20. Dufresne A, Cavaillé J-Y, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64(6):1185–1194CrossRefGoogle Scholar
  21. Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites. J Appl Polym Sci 76(14):2080–2092CrossRefGoogle Scholar
  22. Elanthikkal S, Gopalakrishnapanicker U, Varghese S, Guthrie JT (2010) Cellulose microfibres produced from banana plant wastes: isolation and characterization. Carbohydr Polym 80(3):852–859CrossRefGoogle Scholar
  23. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1):57–65Google Scholar
  24. Evans BR, O’Neill HM, Malyvanh VP, Lee I, Woodward J (2003) Palladiumbacterial cellulose membranes for fuel cells. Biosens Bioelectron 18(7):917–923CrossRefGoogle Scholar
  25. Fahmy TYA, Mobarak F (2008) Nanocomposites from natural cellulose fibers filled with kaolin in presence of sucrose. Carbohydr Polym 72(4):751–755CrossRefGoogle Scholar
  26. Kang HJ, Min SC (2010) Potato peel-based biopolymer film development using high-pressure homogenization, irradiation, and ultrasound. LWT Food Sci Technol 43(6):903–909CrossRefGoogle Scholar
  27. Kaushik A, Singh M (2011) Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydr Res 346(1):76–85CrossRefGoogle Scholar
  28. Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82(2):337–345CrossRefGoogle Scholar
  29. Khalil HPSA, Bhat AH, Yusra AFI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979CrossRefGoogle Scholar
  30. Klemm D, Schumann D, Kramer F, Hesler N, Hornung M, Schmauder H-P, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. In: Klemm D (ed) Polysaccharides II. Springer, Heidelberg, pp 49–96CrossRefGoogle Scholar
  31. Kvien I, Tanem BS, Oksman K (2005) Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6(6):3160–3165CrossRefGoogle Scholar
  32. Lee K-Y, Blaker JJ, Bismarck A (2009) Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties. Compos Sci Technol 69(15–16):2724–2733CrossRefGoogle Scholar
  33. Leitner J, Hinterstoisser B, Wastyn M, Keckes J, Gindl W (2007) Sugar beet cellulose nanofibril-reinforced composites. Cellulose 14(5):419–425CrossRefGoogle Scholar
  34. Li R, Fei J, Cai Y, Li Y, Feng J, Yao J (2009) Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohydr Polym 76(1):94–99CrossRefGoogle Scholar
  35. Pelissari FM, Andrade-Mahecha MM, Sobral PJA, Menegalli FC (2012) Isolation and characterization of the flour and starch of plantain bananas (Musa paradisiaca). Starch 64(5):382–391CrossRefGoogle Scholar
  36. Ramires EC, Dufresne A (2011) A review of cellulose nanocrystals and nanocomposites. Tappi J 10(4):9–16Google Scholar
  37. Roohani M, Habibi Y, Belgacem NM, Ebrahim G, Karimi AN, Dufresne A (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44(8):2489–2498CrossRefGoogle Scholar
  38. Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC, Glenn G, Orts WJ, Imam SH (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81(1):83–92CrossRefGoogle Scholar
  39. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794CrossRefGoogle Scholar
  40. Sejersen MT, Salomonsen T, Ipsen R, Clark R, Rolin C, Engelsen SB (2007) Zeta potential of pectin-stabilised casein aggregates in acidified milk drinks. Int Dairy J 17(4):302–307CrossRefGoogle Scholar
  41. Shah J, Malcolm Brown R (2004) Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotechnol 66(4):352–355CrossRefGoogle Scholar
  42. Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2):425–432CrossRefGoogle Scholar
  43. Soltes EJ, Elder TJ (1981) Pyrolysis. In: Goldstein IS (ed) Organic chemicals from biomass. CRC Press, Florida, pp 63–100Google Scholar
  44. Sun JX, Sun XF, Zhao H, Sun RC (2004) Isolation and characterization of cellulose from sugarcane bagasse. Polym Degrad Stabil 84(2):331–339CrossRefGoogle Scholar
  45. Sun JX, Xu F, Sun XF, Xiao B, Sun RC (2005) Physico-chemical and thermal characterization of cellulose from barley straw. Polym Degrad Stab 88(3):521–531CrossRefGoogle Scholar
  46. Teixeira EM, Pasquini D, Curvelo AAS, Corradini E, Belgacem MN, Dufresne A (2009) Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydr Polym 78(3):422–431CrossRefGoogle Scholar
  47. Teixeira EM, Bondancia TJ, Teodoro KBR, Corrêa AC, Marconcini JM, Mattoso LHC (2011) Sugarcane bagasse whiskers: extraction and characterizations. Ind Crop Prod 33(1):63–66CrossRefGoogle Scholar
  48. Thiebaud M, Dumay E, Picart L, Guiraud JP, Cheftel JC (2003) High-pressure homogenisation of raw bovine milk. Effects on fat globule size distribution and microbial inactivation. Int Dairy J 13(6):427–439CrossRefGoogle Scholar
  49. Wang B, Sain M, Oksman K (2007) Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl Compos Mater 14(2):89–103CrossRefGoogle Scholar
  50. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788CrossRefGoogle Scholar
  51. Zuluaga R, Putaux J-L, Restrepo A, Mondragon I, Gañán P (2007) Cellulose microfibrils from banana farming residues: isolation and characterization. Cellulose 14(6):585–592CrossRefGoogle Scholar
  52. Zuluaga R, Putaux JL, Cruz J, Vélez J, Mondragon I, Gañán P (2009) Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohydr Polym 76(1):51–59CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Franciele Maria Pelissari
    • 1
    • 2
    Email author
  • Paulo José do Amaral Sobral
    • 3
  • Florencia Cecilia Menegalli
    • 1
  1. 1.Department of Food Engineering, School of Food EngineeringUniversity of CampinasCampinasBrazil
  2. 2.Institute of Science and Technology, Food EngineeringUniversity of Jequitinhonha and MucuriDiamantinaBrazil
  3. 3.Department of Food Engineering, School of Animal Science and Food EngineeringUniversity of São PauloPirassunungaBrazil

Personalised recommendations