, Volume 21, Issue 2, pp 1075–1086 | Cite as

Cellulose microfibril orientation in onion (Allium cepa L.) epidermis studied by atomic force microscopy (AFM) and vibrational sum frequency generation (SFG) spectroscopy

  • Kabindra Kafle
  • Xiaoning Xi
  • Christopher M. Lee
  • Bernhard R. Tittmann
  • Daniel J. Cosgrove
  • Yong Bum Park
  • Seong H. Kim
Original Paper


Cellulose microfibril orientation in plant cell walls changes during cell expansion and development. The cellulose microfibril orientation in the abaxial epidermis of onion scales was studied by atomic force microscopy (AFM) and sum frequency generation (SFG) vibrational spectroscopy. Onion epidermal cells in all scales are elongated along the onion bulb axis. AFM images showed that cellulose microfibrils exposed at the innermost surface of the abaxial epidermis are oriented perpendicular to the bulb axis in the outer scales and more dispersed in the inner scales of onion bulb. SFG analyses can determine the orientation of cellulose microfibrils averaged over the entire thickness of the cell wall. We found that the average orientation of cellulose microfibrils inside onion abaxial epidermal cell walls as revealed by SFG is similar to the orientation observed at the innermost cell wall surface by AFM. The capability to determine the average orientation of cellulose microfibrils in intact cell walls will be useful to study how cellulose microfibril orientation is related to biomechanical properties and the growth mechanism of plant cell walls.


Onion epidermis Cellulose microfibril Microfibril orientation Sum frequency generation spectroscopy Atomic force microscopy 



This work was supported by The Center for Lignocellulose Structure and Formation, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, and Office of Basic Energy Sciences under award number DE-SC0001090. We acknowledge Anthony J. Barthel for help with optical profilometry measurements, Liza Wilson with FTIR, and Lin Fang with 2D XRD measurements.

Supplementary material

10570_2013_121_MOESM1_ESM.doc (1.7 mb)
Supplementary material 1 (DOC 1767 kb)


  1. Anderson CT, Carroll A, Akhmetova L, Somerville C (2010) Real-time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. Plant Physiol 152(2):787–796CrossRefGoogle Scholar
  2. Barnette AL, Bradley LC, Veres BD, Schreiner EP, Park YB, Park J, Park S, Kim SH (2011) Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy. Biomacromolecules 12(7):2434–2439CrossRefGoogle Scholar
  3. Barnette AL, Lee C, Bradley LC, Schreiner EP, Park YB, Shin H, Cosgrove DJ, Park S, Kim SH (2012) Quantification of crystalline cellulose in lignocellulosic biomass using sum frequency generation (SFG) vibration spectroscopy and comparison with other analytical methods. Carbohydr Polym 89(3):802–809CrossRefGoogle Scholar
  4. Baskin T (2005) Anisotropic expansion of the plant cell wall. Annu Rev Cell Dev Biol 21:203–222CrossRefGoogle Scholar
  5. Brown RM Jr, Millard AC, Campagnola PJ (2003) Macromolecular structure of cellulose studied by second-harmonic generation imaging microscopy. Opt Lett 28(22):2207–2209CrossRefGoogle Scholar
  6. Chen L, Wilson RH, McCann MC (1997) Investigation of macromolecule orientation in dry and hydrated walls of single onion epidermal cells by FTIR microspectroscopy. J Mol Struct 408:257–260CrossRefGoogle Scholar
  7. Cosgrove DJ (2000) Expansive growth of plant cell walls. Plant Physiol Biochem 38(1):109–124CrossRefGoogle Scholar
  8. Cox G, Moreno N, Feijó J (2005) Second-harmonic imaging of plant polysaccharides. J Biomed Opt 10(2):024013CrossRefGoogle Scholar
  9. Davies LM, Harris PJ (2003) Atomic force microscopy of microfibrils in primary cell walls. Planta 217(2):283–289Google Scholar
  10. Ding SY, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54(3):597–606CrossRefGoogle Scholar
  11. Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356CrossRefGoogle Scholar
  12. Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. PNAS 108(47):E1195–E1203CrossRefGoogle Scholar
  13. Giddings TH Jr, Staehelin LA (1988) Spatial relationship between microtubules and plasma-membrane rosettes during the deposition of primary wall microfibrils in Closterium sp. Planta 173(1):22–30CrossRefGoogle Scholar
  14. Green PB (1960) Multinet growth in the cell wall of Nitella. J Biophys Biochem Cytol 7(2):289–296CrossRefGoogle Scholar
  15. Green PB (1962) Mechanism for plant cellular morphogenesis. Science 138(3548):1404–1405CrossRefGoogle Scholar
  16. Green P (1964) Cell walls and the geometry of plant growth. Brookhaven Symp Biol 16:203–217Google Scholar
  17. Ha MA, Apperley DC, Jarvis MC (1997) Molecular rigidity in dry and hydrated onion cell walls. Plant Physiol 115(2):593–598Google Scholar
  18. Heath IB (1974) A unified hypothesis for the role of membrane bound enzyme complexes and microtubules in plant cell wall synthesis. J Theor Biol 48(2):445–449CrossRefGoogle Scholar
  19. Hieu HC, Tuan NA, Li H, Miyauchi Y, Mizutani G (2011) Sum frequency generation microscopy study of cellulose fibers. Appl Spectrosc 65(11):1254–1259CrossRefGoogle Scholar
  20. Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64:1868CrossRefGoogle Scholar
  21. Kutschera U (2008) The growing outer epidermal wall: design and physiological role of a composite structure. Ann Bot 101(5):615–621CrossRefGoogle Scholar
  22. LaComb R, Nadiarnykh O, Townsend SS, Campagnola PJ (2008) Phase matching considerations in second harmonic generation from tissues: effects on emission directionality, conversion efficiency and observed morphology. Opt Commun 281(7):1823–1832CrossRefGoogle Scholar
  23. Lambert AG, Davies PB, Neivandt DJ (2005) Implementing the theory of sum frequency generation vibrational spectroscopy: a tutorial review. Appl Spectrosc Rev 40(2):103–145CrossRefGoogle Scholar
  24. Lee CM, Mittal A, Barnette AL, Kafle K, Park Y, Shin H, Johnson DK, Park S, Kim SH (2013a) Cellulose polymorphism study with sum-frequency-generation (SFG) vibration spectroscopy: identification of exocyclic CH2OH conformation and chain orientation. Cellulose 20(3):991–1000CrossRefGoogle Scholar
  25. Lee CM, Mohamed NMA, Watts HD, Kubicki JD, Kim SH (2013b) Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ. J Phys Chem B 117(22):6681–6692CrossRefGoogle Scholar
  26. Li S, Gu Y (2012) Cellulose biosynthesis in higher plants and the role of the cytoskeleton. In: Hetherington AM (ed) eLS. Wiley, Chichester, pp 1–8 Google Scholar
  27. Marechal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struct 523(1):183–196CrossRefGoogle Scholar
  28. Marga F, Grandbois M, Cosgrove DJ, Baskin TI (2005) Cell wall extension results in the coordinate separation of parallel microfibrils: evidence from scanning electron microscopy and atomic force microscopy. Plant J 43(2):181–190CrossRefGoogle Scholar
  29. McCann M, Wells B, Roberts K (1990) Direct visualization of cross-links in the primary plant cell wall. J Cell Sci 96(2):323–334Google Scholar
  30. Mita T, Shibaoka H (1983) Changes in microtubules in onion leaf sheath cells during bulb development. Plant Cell Physiol 24(1):109–117Google Scholar
  31. Neville A (1985) Molecular and mechanical aspects of helicoid development in plant cell walls. BioEssays 3(1):4–8CrossRefGoogle Scholar
  32. Neville A, Gubb D, Crawford R (1976) A new model for cellulose architecture in some plant cell walls. Protoplasma 90(3–4):307–317CrossRefGoogle Scholar
  33. Ng A, Parker ML, Parr AJ, Saunders PK, Smith AC, Waldron KW (2000) Physicochemical characteristics of onion (Allium cepa L.) tissues. J Agric Food Chem 48(11):5612–5617CrossRefGoogle Scholar
  34. Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312(5779):1491–1495CrossRefGoogle Scholar
  35. Park YB, Lee CM, Koo B-W, Park S, Cosgrove DJ, Kim SH (2013) Monitoring meso-scale ordering of cellulose in intact plant cell walls using sum frequency generation spectroscopy. Plant Physiol 163(2):907–913CrossRefGoogle Scholar
  36. Preston RD (1974) The physical biology of plant cell walls. Chapman & Hall, LondonGoogle Scholar
  37. Richmond PA, Métraux JP, Taiz L (1980) Cell expansion patterns and directionality of wall mechanical properties in Nitella. Plant Physiol 65(2):211–217CrossRefGoogle Scholar
  38. Roelofsen PA, Houwink A (1953) Architecture and growth of the primary cell wall in some plant hairs and in the Phycomyces sporangiophore. Acta Bot Ner 2:218–225CrossRefGoogle Scholar
  39. Roland J-C, Vian B, Reis D (1977) Further observations on cell wall morphogenesis and polysaccharide arrangement during plant growth. Protoplasma 91(2):125–141CrossRefGoogle Scholar
  40. Satiat-Jeunemaifre B, Martin B, Hawes C (1992) Plant cell wall architecture is revealed by rapid-freezing and deep-etching. Protoplasma 167(1–2):33–42CrossRefGoogle Scholar
  41. Sugimoto K, Williamson RE, Wasteneys GO (2000) New techniques enable comparative analysis of microtubule orientation, wall texture, and growth rate in intact roots of Arabidopsis. Plant Physiol 124(4):1493–1506CrossRefGoogle Scholar
  42. Suslov D, Verbelen JP, Vissenberg K (2009) Onion epidermis as a new model to study the control of growth anisotropy in higher plants. J Exp Bot 60(14):4175–4187CrossRefGoogle Scholar
  43. Thimm JC, Burritt DJ, Ducker WA, Melton LD (2000) Celery (Apium graveolens L.) parenchyma cell walls examined by atomic force microscopy: effect of dehydration on cellulose microfibrils. Planta 212(1):25–32CrossRefGoogle Scholar
  44. Thomas LH, Forsyth VT, Šturcová A, Kennedy CJ, May RP, Altaner CM, Apperley DC, Wess TJ, Jarvis MC (2013) Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiol 161(1):465–476CrossRefGoogle Scholar
  45. Wang H-F, Gan W, Lu R, Rao Y, Wu B-H (2005) Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS). Int Rev Phys Chem 24(2):191–256CrossRefGoogle Scholar
  46. Wellner N, Kačuráková M, Malovíková A, Wilson RH, Belton PS (1998) FT-IR study of pectate and pectinate gels formed by divalent cations. Carbohydr Res 308(1):123–131CrossRefGoogle Scholar
  47. Wells B, McCann M, Shedletzky E, Delmer D, Roberts K (1994) Structural features of cell walls from tomato cells adapted to grow on the herbicide 2,6-dichlorobenzonitrile. J Microsc 173(2):155–164CrossRefGoogle Scholar
  48. Wiley JH, Atalla RH (1987) Band assignments in the Raman spectra of celluloses. Carbohydr Res 160:113–129CrossRefGoogle Scholar
  49. Wilson RH, Smith AC, Kačuráková M, Saunders PK, Wellner N, Waldron KW (2000) The mechanical properties and molecular dynamics of plant cell wall polysaccharides studied by Fourier-transform infrared spectroscopy. Plant Physiol 124(1):397–406CrossRefGoogle Scholar
  50. Wood PJ (1980) Specificity in the interaction of direct dyes with polysaccharides. Carbohydr Res 85(2):271–287CrossRefGoogle Scholar
  51. Wood PJ, Fulcher R, Stone BA (1983) Studies on the specificity of interaction of cereal cell wall components with Congo Red and Calcofluor. Specific detection and histochemistry of (1 → 3), (1 → 4),-β-D-glucan. J Cereal Sci 1(2):95–110CrossRefGoogle Scholar
  52. Yoneda A, Ito T, Higaki T, Kutsuna N, Saito T, Ishimizu T, Osada H, Hasezawa S, Matsui M, Demura T (2010) Cobtorin target analysis reveals that pectin functions in the deposition of cellulose microfibrils in parallel with cortical microtubules. Plant J 64(4):657–667CrossRefGoogle Scholar
  53. Zhang T, Mahgsoudy-Louyeh S, Tittmann B, Cosgrove D (2013) Visualization of the nanoscale pattern of recently-deposited cellulose microfibrils and matrix materials in never-dried primary walls of the onion epidermis. Cellulose 1–10. doi: 10.1007/s10570-013-9996-1
  54. Zugenmaier P (2008) Crystalline cellulose and derivatives. In: Timell TE, Wimmer R (eds) Springer series in wood science. Springer, Berlin, pp 101–174Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Kabindra Kafle
    • 1
  • Xiaoning Xi
    • 2
  • Christopher M. Lee
    • 1
  • Bernhard R. Tittmann
    • 2
  • Daniel J. Cosgrove
    • 3
  • Yong Bum Park
    • 3
  • Seong H. Kim
    • 1
  1. 1.Department of Chemical Engineering and Materials Research InstituteThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.208 Mueller Laboratory, Department of BiologyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations