, Volume 21, Issue 1, pp 627–640 | Cite as

Direct carbamation of cellulose fiber sheets

  • Loan T. T. Vo
  • Fuad Hajji
  • Barbora Široká
  • Avinash P. ManianEmail author
  • Adrienne Davis
  • Timothy J. Foster
  • Thomas BechtoldEmail author
Original Paper


The paper is on introducing carbamate groups in sheets of cellulose fiber assemblies by pad-dry-cure treatments with aqueous solutions of polyethylene glycol, amide and salt. The effects of process variables—on carbamation levels and on mechanical properties of the substrate—are reported. Depending on treatment conditions, the nitrogen contents in substrates are in the range 0.668–2.252 wt%, corresponding to nominal degrees of carbamate group substitution of 0.08–0.28. The carbamation is initiated at 140 °C curing, and the levels rise with temperature up to 220 °C, but decrease at higher temperatures. The duration of curing also exerts an influence. There is a catalytic effect of sodium acetate on the carbamation, but the salt also induces a brown coloration in samples, which is likely a result of Maillard-type reactions. The treatments cause hydrolytic degradation in substrates, but there are options to adjust treatment conditions and minimize damage. Pad-dry-cure treatments are a common operation in the textile and paper industries, and the process may be adopted in commercial-scale operations to create derivatized paper or fabrics (woven, knitted or non-woven) for utilization in applications such as adsorbents for heavy metals from waste water, in hygiene products, in the creation of flame retardant products, or in creating all-cellulose composites by further treatment with alkali.


Cellulose carbamate Textile Fabric Paper Nonwoven Catalyst 



The research leading to these results has received funding from the European Community’s Seventh Framework Programme [FP7/2007-2013] under grant agreement no. 214015. Dr. B. Široká gratefully acknowledges support from the Amt der Vorarlberger Landesregierung, Europäischer Fonds für Regionale Entwicklung (EFRE). Ms. Sandra Koeppel and Dr. Hai Vu-Manh (Research Institute of Textile Chemistry/Physics) are acknowledged for the assistance with nitrogen content determinations and for preparation of the FeTNa solvent respectively. The authors are indebted to the Höhere Technisches Bundeslehr- und Versuchsanstalt Dornbirn for access to their facilities.

Supplementary material

10570_2013_116_MOESM1_ESM.tif (443 kb)
The effect of treatment components on carbamation levels at 150°C, 180°C and 250°C are shown (TIFF 442 kb)


  1. Blagonravova IAA, Pronina IA, Aref’eva SM (1965) The catalytic effect of metallic salts on the reaction of isocyanates with hydroxy compounds. Lakokrasochnye Materialy i Ikh Primenenie 3-5, vide. Chem Abstr 1965:410534Google Scholar
  2. Bredereck K, Hermanutz F (2005) Man–made cellulosics. Rev Prog Color Relat Top 35(1):59–75. doi: 10.1111/j.1478-4408.2005.tb00160.x CrossRefGoogle Scholar
  3. Bridgeford DJ, Rahman M (1988) Cellulose aminomethanate sausage casings. European Patent 0282881A1Google Scholar
  4. Chao Z, Sun D, Xie S (2011) Method for preparation of carbamic acid ester. China Patent 102134205A, vide. Chem Abstr 2011:953533Google Scholar
  5. Chen GM, Huang YP (2001) Deconvolution method for determination of the nitrogen content in cellulose carbamates. Chin Chem Lett 12(4):365–368Google Scholar
  6. Cheng B, Ren Y, Kang W (2007) Preparation of flame retardant cellulose fibers using carbamate. Fangzhi Xuebao 28:19-21, vide. Chem Abstr 2008:33911Google Scholar
  7. DIN (1977-08) 54270-3 Testing of textiles; determination of the limit-viscosity of celluloses, EWNNmod(NaCl)-procedureGoogle Scholar
  8. Ershova O, Costa E, Fernandes AS, Domingues MR, Evtuguin D, Sixta H (2012) Effect of urea on cellulose degradation under conditions of alkaline pulping. Cellulose 19(6):2195–2204. doi: 10.1007/s10570-012-9791-4 CrossRefGoogle Scholar
  9. Fulmer GR, Miller AJM, Sherden NH, Gottlieb HE, Nudelman A, Stoltz BM, Bercaw JE, Goldberg KI (2010) NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics 29(9):2176–2179. doi: 10.1021/om100106e CrossRefGoogle Scholar
  10. Gaehr F, Hermanutz F (2002) Cellulose carbamate fibrous material suitable for low-salt dyeing and printing, its production and its use. World Patent 2002097175A2Google Scholar
  11. Gokel GW (2004) Spectroscopy. In: Dean’s handbook of organic chemistry. 2nd edn. McGraw-Hill, New York, p 6.34Google Scholar
  12. Guo Y, Zhou J, Song Y, Zhang L (2009) An efficient and environmentally friendly method for the synthesis of cellulose carbamate by microwave heating. Macromol Rapid Commun 30(17):1504–1508. doi: 10.1002/marc.200900238 CrossRefGoogle Scholar
  13. Heinze T, Liebert T, Koschella A (2006) Structure of polysaccharides. In: Esterification of polysaccharides. Springer, Berlin, pp 5–14Google Scholar
  14. Higazy A, Hashem MM, Zeid NYA, Hebeish A (1996) The effect of non-cellulosic constituents on the behaviour of flax towards sodium chlorite, urea and dyes. J Soc Dyers Colour 112(10):281–286. doi: 10.1111/j.1478-4408.1996.tb01758.x CrossRefGoogle Scholar
  15. Iller E, Stupińska H, Starostka P (2007) Properties of cellulose derivatives produced from radiation—Modified cellulose pulps. Radiat Phys Chem 76(7):1189–1194. doi: 10.1016/j.radphyschem.2006.12.002 CrossRefGoogle Scholar
  16. ISO (1998) 12947-3: Textiles—Determination of the abrasion resistance of fabrics by the Martindale method—Part 3: Determination of mass lossGoogle Scholar
  17. ISO (1999) 13934-1: Textiles—Tensile properties of fabrics—Part 1: Determination of maximum force and elongation at maximum force using the strip methodGoogle Scholar
  18. Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998a) Comprehensive cellulose chemistry, vol. 2: Functionalization of Cellulose. Wiley-VCH Verlag GmbH, Weinheim, pp 161–164Google Scholar
  19. Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998b) Comprehensive Cellulose Chemistry; vol. 1: Fundamentals and analytical methods. WILEY-VCH Verlag GmbH, Weinheim, pp 130–135Google Scholar
  20. Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998c) Comprehensive Cellulose Chemistry; vol. 1: Fundamentals and Analytical Methods. WILEY-VCH Verlag GmbH, Weinheim, p 173Google Scholar
  21. Koebel M, Strutz EO (2003) Thermal and hydrolytic decomposition of urea for automotive selective catalytic reduction systems: thermochemical and practical aspects. Ind Eng Chem Res 42(10):2093–2100. doi: 10.1021/ie020950o CrossRefGoogle Scholar
  22. Kotek R (2007) Regenerated cellulose fibers. In: Lewin M (ed) Handbook of fiber chemistry. CRC Press, Boca Raton, pp 668–771Google Scholar
  23. Kwak EJ, Lim SI (2004) The effect of sugar, amino acid, metal ion, and NaCl on model Maillard reaction under pH control. Amino Acids 27(1):85–90. doi: 10.1007/s00726-004-0067-7 CrossRefGoogle Scholar
  24. Laxen T, Hassi H (2007) Preparation of antimicrobial cellulose material from polysaccharides and its pharmaceutical applications. World Patent 2007135245A1Google Scholar
  25. Loth F, Schaaf E, Fink HP, Kunze J, Gensrich HJ (2004) Procedure for preparation of cellulose carbamate in an inert organic solvent which is non-miscible with water. Germany Patent 10253672B3Google Scholar
  26. Lundström A, Andersson B, Olsson L (2009) Urea thermolysis studied under flow reactor conditions using DSC and FT-IR. Chem Eng J 150(2–3):544–550. doi: 10.1016/j.cej.2009.03.044 CrossRefGoogle Scholar
  27. Maimaiti H, Kebier B (2011) Method for preparing cellulose sponge. China Patent 102212211A, vide. Chem Abstr 2011:1312576Google Scholar
  28. McNeal I (2010) Adsorption of lanthanides on cellulose carbamate: silica hybrid materials. paper presented at the 41st middle atlantic regional meeting of the american chemical society, Wilmington, DE, United States, vide. Chem Abstr 2010:420793Google Scholar
  29. Nada A-AMA, Kamel S, El-Sakhawy M (2000) Thermal behaviour and infrared spectroscopy of cellulose carbamates. Polym Degrad Stab 70(3):347–355. doi: 10.1016/S0141-3910(00)00119-1 CrossRefGoogle Scholar
  30. Nozawa Y, Higashide F (1981) Partially carbamate reaction of cellulose with urea. J Appl Polym Sci 26(6):2103–2107. doi: 10.1002/app.1981.070260633 CrossRefGoogle Scholar
  31. Rizzi GP (2008) Effects of cationic species on visual color formation in model maillard reactions of pentose sugars and amino acids. J Agric Food Chem 56(16):7160–7164. doi: 10.1021/jf801197n CrossRefGoogle Scholar
  32. Schindler WD, Hauser PJ (2004) Softening finishes. Chemical finishing of textiles. Woodhead Publishing Limited, Cambridge, pp 29–42CrossRefGoogle Scholar
  33. Segal L, Seggerton FV (1961) Some aspects of the reaction between urea and cellulose. Text Res J 31(5):460–471. doi: 10.1177/004051756103100510 CrossRefGoogle Scholar
  34. Široký J, Blackburn RS, Bechtold T, Taylor J, White P (2010) Attenuated total reflectance Fourier-transform Infrared spectroscopy analysis of crystallinity changes in lyocell following continuous treatment with sodium hydroxide. Cellulose 17(1):103–115. doi: 10.1007/s10570-009-9378-x CrossRefGoogle Scholar
  35. Struszczyk H, Starostka P, Urbanowski A, Mikoiajczyk W, Wawro D, Jozwicka J, Chodzinski J, Jarzebowski Z, Loster M, Nowotarski A, Wnuk J (1997) Preparation of cellulose carbamate forming stable spinning solution Germany Patent 19635246A1Google Scholar
  36. Tajima H, Saito H (1997) Adsorbents containing cellulose carbamate for water treatment. Japan Patent 09099238A, vide. Chem Abstr 1997:361248Google Scholar
  37. Vo LTT, Široká B, Manian AP, Bechtold T (2010) Functionalisation of cellulosic substrates by a facile solventless method of introducing carbamate groups. Carbohydr Polym 82(4):1191–1197. doi: 10.1016/j.carbpol.2010.06.052 CrossRefGoogle Scholar
  38. Vo LTT, Široká B, Manian AP, Duelli H, MacNaughtan B, Noisternig MF, Griesser UJ, Bechtold T (2013) All-cellulose composites from woven fabrics. Compos Sci Technol 78(1):30–40. doi: 10.1016/j.compscitech.2013.01.018 CrossRefGoogle Scholar
  39. Wendlandt WW, Kasper M, Bellamy S (1984) A TG—DSC investigation of the thermal dissociation of selected guanidinium salts. Thermochim Acta 75(1–2):239–244. doi: 10.1016/0040-6031(84)85024-8 CrossRefGoogle Scholar
  40. Woodings C (2001) New developments in biodegradable nonwovens. Accessed 17 Dec 2012
  41. Yang G, Zhang L, Feng H (1999) Role of polyethylene glycol in formation and structure of regenerated cellulose microporous membrane. J Membr Sci 161(1–2):31–40. doi: 10.1016/s0376-7388(99)00095-2 CrossRefGoogle Scholar
  42. Yin C, Shen X (2007) Synthesis of cellulose carbamate by supercritical CO2-assisted impregnation: structure and rheological properties. Eur Polymer J 43(5):2111–2116. doi: 10.1016/j.eurpolymj.2007.01.041 CrossRefGoogle Scholar
  43. Yin C, Li J, Xu Q, Peng Q, Liu Y, Shen X (2007) Chemical modification of cotton cellulose in supercritical carbon dioxide: synthesis and characterization of cellulose carbamate. Carbohydr Polym 67(2):147–154. doi: 10.1016/j.carbpol.2006.05.010 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Loan T. T. Vo
    • 1
  • Fuad Hajji
    • 2
  • Barbora Široká
    • 1
  • Avinash P. Manian
    • 1
    Email author
  • Adrienne Davis
    • 3
  • Timothy J. Foster
    • 2
  • Thomas Bechtold
    • 1
    Email author
  1. 1.Research Institute of Textile Chemistry/PhysicsUniversity of InnsbruckDornbirnAustria
  2. 2.Division of Food Sciences, School of BiosciencesUniversity of NottinghamSutton BoningtonUK
  3. 3.School of ChemistryUniversity of NottinghamNottinghamUK

Personalised recommendations