Cellulose

, Volume 21, Issue 1, pp 641–652 | Cite as

Sugarcane bagasse cellulose fibres and their hydrous niobium phosphate composites: synthesis and characterization by XPS, XRD and SEM

  • P. H. F. Pereira
  • H. J. C. Voorwald
  • M. O. H. Cioffi
  • M. L. C. P. Da Silva
  • A. M. B. Rego
  • A. M. Ferraria
  • Maria Norberta De Pinho
Original Paper

Abstract

Cellulose fibres obtained from sugarcane bagasse were submitted to a purification process, which consisted of an acid hydrolysis for elimination of the major part of lignin and hemicellulose. This was followed by a delignification process carried out in two steps to yield crude cellulose (CCell) fibres in the first one and with a subsequent bleaching in order to yield bleached cellulose fibres (BCell). Composites of crude and bleached cellulose fibres with hydrous niobium phosphate, cell/NbOPO4·nH2O, were subsequently synthesized. Scanning electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction characterization of the obtained materials showed CCell/NbOPO4·nH2O and BCell/NbOPO4·nH2O are real composites. The nature of the cellulose (CCell or BCell) has an important role on the composites obtained, namely on the niobium salt composition at the composite surface. The synthesis of membranes of both cellulose and mixed matrix cellulose/NbOPO4·nH2O was only possible when the bleached cellulose was used.

Keywords

Bleaching Cellulose Morphology XPS XRD SEM 

Notes

Acknowledgments

The authors acknowledge the financial support from Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) as well as the Fundação para a Ciência e a Tecnologia (FCT), Portugal.

References

  1. Abbasi T, Abbasi SA (2010) Biomass energy and the environmental impacts associated with its production and utilization. Renew Sust Energy Rev 14:919–937CrossRefGoogle Scholar
  2. Araújo JR, Mano B, Teixeira GM, Spinacé MAS, De Paoli MA (2010) Biomicrofibrilar composites of high density polyethylene reinforced with curauá fibres: mechanical, interfacial and morphological properties. Compos Sci Technol 70:1637–1644CrossRefGoogle Scholar
  3. Asgarkhani HMA, Mousavi SM, Saljoughi E (2013) Cellulose acetate butyrate membrane containing TiO2 nanoparticle: preparation, characterization and permeation study. Korean J Chem Eng 30:1819–1824CrossRefGoogle Scholar
  4. Ass BAP, Belgacem MN, Frollini E (2006) Mercerized linters cellulose: characterization and acetylation in N-N-dimethylacetamide/lithium chloride. Carbohyd Polym 63:19–29CrossRefGoogle Scholar
  5. Beamson G, Briggs D (1992) High resolution XPS of organic polymers. The scienta ESCA300 database. Wiley, New YorkGoogle Scholar
  6. Botelho do Rego AM, Ferraria AM, El Beghdadi J, Debontridder F, Brogueira P, Naaman R, Rei Vilar M (2005) Adsorption of phenylphosphonic acid on GaAs (100) surfaces. Langmuir 21:8765–8773CrossRefGoogle Scholar
  7. Corradini E, Ito EN, Marconcini JM, Rios CT, Agnelli JAM, Mattoso LHC (2009) Interfacial behavior of composites of recycled poly(ethyelene terephthalate) and sugarcane bagasse fibre. Polym Test 28:183–187CrossRefGoogle Scholar
  8. Da Silva GLJP, Da Silva MLCP, Caetano T (2002) Preparation and characterization of hydrous zirconium oxide formed by homogeneous precipitation. Mat Res 5:149–153Google Scholar
  9. Dias MOS, Ensinas AV, Nebra AS, Filho RM, Rossell CEV, Maciel MRW (2009) Production of bioethanol and other biobased materials from sugarcane bagasse: integration to conventional bioethanol production process. Chem Eng Res Des 87:1206–1216CrossRefGoogle Scholar
  10. DNPM—Departamento Nacional de Produção Mineral. Economia Mineral do Brasil. 2009Google Scholar
  11. Dong YY, Fu D, Zhao JJ, He J, Ma MG, Sun SL, Ma MG, Xu F, Sun RC (2013a) Environmentally friendly ultrosound synthesis and antibacterial activity of cellulose/Ag/AgCl hybrids. Carbohyd Polym 99:166–172CrossRefGoogle Scholar
  12. Dong YY, He J, Sun SL, Ma MG, Fu LH, Sun RC (2013b) Environmentally friendly microwave ionic liquids synthesis of hybrids from cellulose and AgX (X = Cl, Br). Carbohyd Polym 89:168–173CrossRefGoogle Scholar
  13. Fidale LC, Nikolajski M, Rudolph T, Dutz S, Schacher FH, Heinze T (2013) Hybrid Fe3O4@amino cellulose nanoparticles in organic media—heterogeneous ligands for atom transfer radical polymerizations. J Colloid Interf Sci 390:25–33CrossRefGoogle Scholar
  14. Galletti AMR, Antonette C, De Luise C, Licurse D, Di Nasso NN (2012) Levulinic acid production from waste Biomass. BioResources 7:1824–1835Google Scholar
  15. Guimarães JL, Frollini E, Silva CG, Wypych F, Satyanarayana KG (2009) Characterization of banana, sugarcane bagasse and sponge gourd fibres of Brazil. Ind Crop Prod 30:407–415CrossRefGoogle Scholar
  16. Guimarães JL, Wypych F, Saul CK, Ramos LP, Satyanarayana KG (2010) Studies of the processing and characterization of corn starch and its composites with banana and sugarcane fibres from Brazil. Carbohyd Polym 80:130–138CrossRefGoogle Scholar
  17. Karade SR (2010) Cement-bonded composites from lignocellulosic wastes. Constr Build Mater 24:1323–1330CrossRefGoogle Scholar
  18. Khalilabal MS, Yazdanshenas ME (2013) One pot sonochemical synthesis of superhydrophobic organic inorganic hybrid coatings on cotton cellulose. Cellulose. doi: 10.1007/s10570-013-0040-2 Google Scholar
  19. Lazarin AM, Borgo CA, Gushikem Y (2003) A platinum electrode coated with a copper (II) aminopropyl complex-cellulose acetate membrane and its use for dissolved oxygen reduction. J Membr 1:175–184CrossRefGoogle Scholar
  20. Li WY, Jin AX, Liu CF, Sun RC, Zhang AP, Kennedy JF (2009) Homogeneous modification of cellulose with succinic anhydride in ionic liquid using 4-dimethylaminopyridine as a catalyst. Carbohyd Polym 78:389–395CrossRefGoogle Scholar
  21. Li SM, Dong YY, Ma MG, Fu LH, Sun RC, Xu F (2013) Hydrothermal synthesis, characterization, and bactericidal activities of hybrid from cellulose and TiO2. Carbohyd Polym 96:15–20CrossRefGoogle Scholar
  22. Luz SM, Del Tio J, Rocha GJ, Guimarães A, Delacor A Jr (2008) Cellulose and cellulignin from sugarcane reinforced polypropylene composites: effect of acetylation on mechanical and thermal properties. Compos Part A Appl S 39:1362–1369CrossRefGoogle Scholar
  23. Maschio LJ, Pereira PHF, Da Silva MLCP (2012) Preparation and characterization of cellulose/hydrous niobium oxide hybrid. Carbohyd Polym 89:992–996CrossRefGoogle Scholar
  24. Naumkin AV, Kraut-Vass A, Gaarenstroom SW, Powell CJ (2012) NIST X-ray photoelectron spectroscopy database, standard reference database 20, version 4.1, National Institute of Standards and Technology, Accessed 2013Google Scholar
  25. Onésippe C, Passe-Coutrin N, Toro F, Delvasto S, Bilba K, Arsène MA (2010) Sugar cane bagasse fibres reinforced cement composites: thermal considerations. Compos Part A Appl S 41:549–556CrossRefGoogle Scholar
  26. Pantoja JLR, Sader LT, Damianovic MHRZ, Foresti E, Silva EL (2010) Performance evaluation of packing materials in the removal of hydrogen sulphide in gas-phase biofilters: polyurethane foam, sugarcane bagasse, and coconut fibre. Chem Eng J 158:441–450CrossRefGoogle Scholar
  27. Pereira PHF (2011) Preparação e caracterização de híbridos originados a partir do bagaço de cana-de-açúcar/NbOPO4·nH2O e sua aplicação em membranas como elemento filtrante PhD Thesis, University of São Paulo StateGoogle Scholar
  28. Pereira PHF, Da Silva MLCP (2009) Estudo da adsorção de surfactante catiônico na matriz inorgânica fosfato de nióbio hidratado. Quím Nova 32:7–11CrossRefGoogle Scholar
  29. Pereira PHF, Peixoto ALC, Da Silva MLCP (2009) Estudo da adsorção de surfactante catiónico cetiltrimetilamônio em diferentes matrizes inorgânicas via óxido de nióbio. Cerâmica 55:312–317CrossRefGoogle Scholar
  30. Pereira PHF, Voorwald HJC, Cioffi MOH, Da Silva MLCP (2010) Preparation and characterization of cellulose/hidrous niobium phosphate hybrid. Bio Resources 5:1010–1021Google Scholar
  31. Rescignano N, Fortunati RE, Montesano S, Emiliani C, Kenny JM, Martino S, Armentano I (2014) PVA bio-nanocomposites: a new take-off using cellulose nanocrystals and PLGA nanoparticles. Carbohyd Polym 99:47–58Google Scholar
  32. Shaikh HM, Pandare KV, Nair G, Varma AJ (2009) Utilization of sugarcane bagasse cellulose for producing cellulose acetates: novel use of residual hemicellulose as plasticizer. Carbohyd Polym 76:23–29CrossRefGoogle Scholar
  33. Tagliaferro GV, Da Silva GLJP, Da Silva MLCP (2005) Influência do agente precipitante na preparação do óxido de nióbio (V) hidratado pelo método da precipitação em solução homogênea. Quim Nova 28:250–254CrossRefGoogle Scholar
  34. Uddin MJ, Cesano F, Bonino F, Bordiga S, Spoto G, Scarano D, Zecchina A (2007) Photoactive TiO2 films on cellulose fibres: synthesis and characterization. J Photoch Photobio A 189(2–3):286–294CrossRefGoogle Scholar
  35. Vieira RGP, Filho GR, Assunção RMN, Meireles CS, Vieira JG, Oliveira GS (2007) Synthesis and characterization of methylcellulose from sugar cane bagasse cellulose. Carbohyd Polym 67:182–189CrossRefGoogle Scholar
  36. Vilela C, Freire CSR, Marques PAAP, Trindade T, Pascoal Neto C, Fardim P (2010) Synthesis and characterization of new CaCO3/cellulose nanocomposites prepared by controlled hydrolysis of dimethylcarbonate. Carbohyd Polym 79:1150–1156CrossRefGoogle Scholar
  37. Wang J, Liu W, Li H, Wang H, Wang Z, Zhou W, Liu J (2013) Preparation of cellulose fiber–TiO2 nanobelt–silver nanoparticle hierarchically structured hybrid paper and its photocatalytic and antibacterial properties. Chem Eng J 228:272–280CrossRefGoogle Scholar
  38. Xie K, Yu Y, Shi Y (2009) Synthesis and characterization of cellulose/silica hybrid materials with chemical crosslinking. Carbohyd Polym 78:799–805CrossRefGoogle Scholar
  39. Xu Y, Wu Q, Lei Y, Yao F (2010) Creep behavior of bagasse fibre reinforced polymer composites. Bioresour Technol 101:3280–3286CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • P. H. F. Pereira
    • 1
  • H. J. C. Voorwald
    • 1
  • M. O. H. Cioffi
    • 1
  • M. L. C. P. Da Silva
    • 2
  • A. M. B. Rego
    • 3
  • A. M. Ferraria
    • 3
  • Maria Norberta De Pinho
    • 4
  1. 1.Fatigue and Aeronautical Materials Research GroupDMT/FEG/UNESPGuaratinguetáBrazil
  2. 2.Chemistry DepartmentDEQUI/EEL/USPLorenaBrazil
  3. 3.Centro de Química-Física Molecular and Institute of Nanosciences and Nanotechnologies, Inst. Sup TécnicoUniv. Técnica de LisboaLisbonPortugal
  4. 4.Department of Chemical Engineering, Instituto Superior TecnicoUniv. Técnica de LisboaLisbonPortugal

Personalised recommendations