Cellulose

, Volume 21, Issue 1, pp 261–273 | Cite as

A specific case in the classification of woods by FTIR and chemometric: discrimination of Fagales from Malpighiales

  • Ara Carballo-Meilan
  • Adrian M. Goodman
  • Mark G. Baron
  • Jose Gonzalez-Rodriguez
Original Paper

Abstract

Fourier transform infrared (FTIR) spectroscopic data was used to classify wood samples from nine species within the Fagales and Malpighiales using a range of multivariate statistical methods. Taxonomic classification of the family Fagaceae and Betulaceae from Angiosperm Phylogenetic System Classification (APG II System) was successfully performed using supervised pattern recognition techniques. A methodology for wood sample discrimination was developed using both sapwood and heartwood samples. Ten and eight biomarkers emerged from the dataset to discriminate order and family, respectively. In the species studied FTIR in combination with multivariate analysis highlighted significant chemical differences in hemicelluloses, cellulose and guaiacyl (lignin) and shows promise as a suitable approach for wood sample classification.

Keywords

Plant taxonomy classification Fagales Malpighiales Infrared spectroscopy Multivariate analysis Wood 

References

  1. Åkerholm M, Salmén L, Salme L (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42:963–969. doi:10.1016/S0032-3861(00)00434-1 CrossRefGoogle Scholar
  2. Anchukaitis KJ, Evans MN, Lange T et al (2008) Consequences of a rapid cellulose extraction technique for oxygen isotope and radiocarbon analyses. Anal Chem 80:2035–2041. doi:10.1016/j.gca.2004.01.006.Analytical CrossRefGoogle Scholar
  3. Apg II (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436. doi:10.1046/j.1095-8339.2003.t01-1-00158.x CrossRefGoogle Scholar
  4. Barnett JR, Jeronimidis G (2003) Wood quality and its biological basis. Blackwell, Oxford, p 226Google Scholar
  5. Bjarnestad S, Dahlman O (2002) Chemical compositions of hardwood and softwood pulps employing photoacoustic Fourier transform infrared spectroscopy in combination with partial least-squares analysis. Anal Chem 74:5851–5858. doi:10.1021/ac025926z CrossRefGoogle Scholar
  6. Brinkmann K, Blaschke L, Polle A (2002) Comparison of different methods for lignin determination as a basis for calibration of near-infrared reflectance spectroscopy and implications of lignoproteins. J Chem Ecol 28:2483–2501. doi:10.1023/A:1021484002582 CrossRefGoogle Scholar
  7. Brunner M, Eugster R, Trenka E, Bergamin-Strotz L (1996) FT-NIR spectroscopy and wood identification. Holzforschung 50:130–134. doi:10.1515/hfsg.1996.50.2.130 CrossRefGoogle Scholar
  8. Callow JA, Andrews JH, Tommerup IC (2006) Advances in botanical research, vol 21. Academic Press, London, p 304Google Scholar
  9. Coates J (2000) Interpretation of infrared spectra, a practical approach. In: Meyers RA (ed) Encyclopedia of Analytical Chemistry. Wiley, Chichester, pp 10815–10837 Google Scholar
  10. Ek M, Gellerstedt G, Henriksson G (2009) Wood chemistry and wood biotechnology. Walter de Gruyter, Berlin, p 308CrossRefGoogle Scholar
  11. Gidman E, Goodacre R, Emmett B et al (2003) Investigating plant–plant interference by metabolic fingerprinting. Phytochemistry 63:705–710. doi:10.1016/S0031-9422(03)00288-7 CrossRefGoogle Scholar
  12. Gorgulu ST, Dogan M, Severcan F (2007) The characterization and differentiation of higher plants by Fourier transform infrared spectroscopy. Appl Spectrosc 61:300–308. doi:10.1366/000370207780220903 CrossRefGoogle Scholar
  13. Gottlieb DM, Schultz J, Bruun SW et al (2004) Multivariate approaches in plant science. Phytochemistry 65:1531–1548. doi:10.1016/j.phytochem.2004.04.008 CrossRefGoogle Scholar
  14. Hastie TJ, Tibshirani RJ, Friedman JJH (2009) The elements of statistical learning: data mining, inference, and prediction. Springer, New York, p 745CrossRefGoogle Scholar
  15. Heinze T, Liebert T, Koschella A (2006) Esterification of polysaccharides. Springer, Berlin, p 232Google Scholar
  16. Hobro A, Kuligowski J, Döll M, Lendl B (2010) Differentiation of walnut wood species and steam treatment using ATR-FTIR and partial least squares discriminant analysis (PLS-DA). Anal Bioanal Chem 398:2713–2722. doi:10.1007/s00216-010-4199-1 CrossRefGoogle Scholar
  17. Huang A, Zhou Q, Liu J et al (2008) Distinction of three wood species by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy. J Mol Struct 883–884:160–166. doi:10.1016/j.molstruc.2007.11.061 CrossRefGoogle Scholar
  18. Kacuráková M, Kauráková M, Capek P et al (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr Polym 43:195–203. doi:10.1016/S0144-8617(00)00151-X CrossRefGoogle Scholar
  19. Kemsley EK (1998) Discriminant analysis and class modelling of spectroscopic data. Wiley, Chichester, p 179Google Scholar
  20. Kim SW, Ban SH, Chung HJ et al (2004) Taxonomic discrimination of flowering plants by multivariate analysis of Fourier transform infrared spectroscopy data. Plant Cell Rep 23:246–250. doi:10.1007/s00299-004-0811-1 CrossRefGoogle Scholar
  21. Klecka WR (1980) Discriminant analysis. Sage Publications, Beverly Hills, CA, p 71Google Scholar
  22. Kubo S, Kadla JF (2005) Hydrogen bonding in lignin: a Fourier transform infrared model compound study. Biomacromolecules 6:2815–2821. doi:10.1021/bm050288q CrossRefGoogle Scholar
  23. Larkin P (2011) Infrared and Raman spectroscopy; principles and spectral interpretation. Elsevier, Amsterdam, p 230Google Scholar
  24. Liang CY, Marchessault RH (1959) Infrared spectra of crystalline polysaccharides. II. Native celluloses in the region from 640 to 1700 cm−1. J Polym Sci 39:269–278. doi:10.1002/pol.1959.1203913521 CrossRefGoogle Scholar
  25. Marchessault RH (1962) Application of infra-red spectroscopy to cellulose and wood polysaccharides. Pure Appl Chem 5:107–130. doi:10.1351/pac196205010107 CrossRefGoogle Scholar
  26. Marchessault RH, Liang CY (1962) The infrared spectra of crystalline polysaccharides. VIII. Xylans. J Polym Sci 59:357–378. doi:10.1002/pol.1962.1205916813 CrossRefGoogle Scholar
  27. Martin JW (2007) Concise encyclopedia of the structure of materials. Elsevier, Amsterdam, p 512Google Scholar
  28. McCann MC, Bush M, Milioni D et al (2001) Approaches to understanding the functional architecture of the plant cell wall. Phytochemistry 57:811–821. doi:10.1016/S0031-9422(01)00144-3 CrossRefGoogle Scholar
  29. Meinzer FC, Lachenbruch B, Dawson TE (2011) Size- and age-related changes in tree structure and function. Springer, Dordrecht, p 510CrossRefGoogle Scholar
  30. Mohebby B (2005) Attenuated total reflection infrared spectroscopy of white-rot decayed beech wood. Int Biodeterior Biodegradation 55:247–251. doi:10.1016/j.ibiod.2005.01.003 CrossRefGoogle Scholar
  31. Mohebby B (2008) Application of ATR infrared spectroscopy in wood acetylation. J Agric Sci 10:253–259Google Scholar
  32. Nuopponen M (2005) FT-IR and UV Raman spectroscopic studies on thermal modification of Scots pine wood and its extractable compounds. Helsinki University of Technology, Espoo, FinlandGoogle Scholar
  33. Obst JR (1982) Guaiacyl and syringyl lignin composition in hardwood cell components. Holzforschung 36:143–152. doi:10.1515/hfsg.1982.36.3.143 CrossRefGoogle Scholar
  34. Pandey KK, Vuorinen T (2008) Comparative study of photodegradation of wood by a UV laser and a xenon light source. Polym Degrad Stab 93:2138–2146. doi:10.1016/j.polymdegradstab.2008.08.013 CrossRefGoogle Scholar
  35. Rakotomalala R (2005) "TANAGRA : un logiciel gratuit pour l'enseignement et la recherche", in Actes de EGC'2005, RNTI-E-3, vol. 2, pp. 697–702Google Scholar
  36. Rana R (2008) Correlation between anatomical/chemical wood properties and genetic markers as a means of wood certification. Dissertation, Klartext GmbH, Göttingen. ISBN: 978-3-9811503-2-2Google Scholar
  37. Rana R, Langenfeld-Heyser R, Finkeldey R, Polle A (2009) FTIR spectroscopy, chemical and histochemical characterisation of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae. Wood Sci Technol 44:225–242. doi:10.1007/s00226-009-0281-2 CrossRefGoogle Scholar
  38. Revanappa SB, Nandini CD, Salimath PV (2010) Structural characterisation of pentosans from hemicellulose B of wheat varieties with varying chapati-making quality. Food Chem 119:27–33. doi:10.1016/j.foodchem.2009.04.064 CrossRefGoogle Scholar
  39. Rhoads CA, Painter P, Given P (1987) FTIR studies of the contributions of plant polymers to coal formation. Int J Coal Geol 8:69–83. doi:10.1016/0166-5162(87)90023-1 CrossRefGoogle Scholar
  40. Sandak A, Sandak J, Negri M (2010) Relationship between near-infrared (NIR) spectra and the geographical provenance of timber. Wood Sci Technol 45:35–48. doi:10.1007/s00226-010-0313-y CrossRefGoogle Scholar
  41. Shen JB, Lu HF, Peng QF et al (2008) FTIR spectra of Camellia sect. Oleifera, sect. Paracamellia, and sect. Camellia (Theaceae) with reference to their taxonomic significance. J Syst Evol 46:194–204. doi:10.3724/SP.J.1002.2008.07125 Google Scholar
  42. Silverstein RM, Webster FX, Kiemle D (2005) Spectrometric identification of organic compounds. Wiley, Hoboken, NJ, p 502Google Scholar
  43. Sjostrom E (1981) Wood chemistry: fundamentals and applications. Academic Press, New York, p 293Google Scholar
  44. Stewart D, Wilson HM, Hendra PJ, Morrison IM (1995) Fourier-transform infrared and Raman spectroscopic study of biochemical and chemical treatments of oak wood (Quercus rubra) and barley (Hordeum vulgare) straw. J Agric Food Chem 43:2219–2225. doi:10.1021/jf00056a047 CrossRefGoogle Scholar
  45. Stuart B (2004) Infrared spectroscopy: fundamentals and applications. Wiley, Hoboken, NJ, p 224CrossRefGoogle Scholar
  46. Takayama M (1997) Fourier transform Raman assignment of guaiacyl and syringyl marker bands for lignin determination. Spectrochim Acta A 53:1621–1628. doi:10.1016/S1386-1425(97)00100-5 CrossRefGoogle Scholar
  47. Tsuchikawa S (2007) A review of recent near infrared research for wood and paper. Appl Spectrosc Rev 42:43–71. doi:10.1080/05704920601036707 CrossRefGoogle Scholar
  48. Wang S, Wang K, Liu Q et al (2009) Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnol Adv 27:562–567. doi:10.1016/j.biotechadv.2009.04.010 CrossRefGoogle Scholar
  49. Wellner N (1998) FT-IR study of pectate and pectinate gels formed by divalent cations. Carbohydr Res 308:123–131. doi:10.1016/S0008-6215(98)00065-2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ara Carballo-Meilan
    • 2
  • Adrian M. Goodman
    • 1
  • Mark G. Baron
    • 1
  • Jose Gonzalez-Rodriguez
    • 1
  1. 1.School of Life SciencesUniversity of LincolnLincolnUK
  2. 2.Department of Chemical EngineeringUniversity of LoughboroughLoughboroughUK

Personalised recommendations