Cellulose

, Volume 20, Issue 6, pp 2731–2744 | Cite as

The swelling and dissolution of cellulose crystallites in subcritical and supercritical water

  • Lasse K. Tolonen
  • Paavo A. Penttilä
  • Ritva Serimaa
  • Andrea Kruse
  • Herbert Sixta
Original Paper

Abstract

The swelling and dissolution phenomena of microcrystalline cellulose (MCC) were investigated in subcritical and supercritical water. Commercial MCC was treated in water at temperatures of 250–380 °C and a pressure of 250 bar for 0.25–0.75 s. As reaction products, undissolved but depolymerised cellulose residue, short-chain cellulose precipitate, water-soluble cello-oligosaccharides and monosaccharides, as well as their degradation products, were detected. The highest yield of the cellulose II precipitate was obtained after a reaction time of 0.25 s at 360 °C. Our hypothesis was that if the crystallites were swollen, the depolymerization pattern would be that of homogeneous reaction and the cellulose Iβ to cellulose II transformation would be observed. The changes in the structure of the undissolved cellulose residue were characterised by size exclusion chromatography, wide-angle X-ray scattering and 13C solid-state NMR techniques. In many cases, the cellulose residue samples contained cellulose II; however, due to experimental limitations, it remains unclear whether it was formed through the swelling of crystallites or the partial readsorption of the dissolved cellulose fraction. The molar mass distributions of untreated MCC and after low intensity treatments showed a bimodal shape. After high intensity treatments the high molar mass chains disappeared which indicated a complete swelling or dissolution of the crystallites.

Keywords

Subcritical water Supercritical water Microcrystalline cellulose Cellulose precipitate Cellulose dissolution 

Supplementary material

10570_2013_72_MOESM1_ESM.pdf (1.7 mb)
Supplementary material 1 (PDF 1749 kb)

References

  1. Baker AA, Helbert W, Sugiyama J, Miles MJ (1998) Surface structure of native cellulose microcrystals by AFM. Appl Phys A 66:S559–S563. doi:10.1007/s003399870002 Google Scholar
  2. Battista OA, Coppick S, Howsmon JA, Morehead FF, Sisson WA (1956) Level-off degree of polymerization. Ind Eng Chem 48:333–335. doi:10.1021/ie50554a046 CrossRefGoogle Scholar
  3. Blumberg RL, Stanley HE, Geiger A, Mausbach P (1984) Connectivity of hydrogen bonds in liquid water. J Chem Phys 80:5230–5241. doi:10.1063/1.446593 CrossRefGoogle Scholar
  4. Bobleter O, Grif M, Huber C (1994) Thermal hydrolysis of plant materials with water and alkaline solutions. Ger Offen 5Google Scholar
  5. Deguchi S, Tsujii K, Horikoshi K (2006) Cooking cellulose in hot and compressed water. Chem Commun 31:3293–3295. doi:10.1039/B605812D CrossRefGoogle Scholar
  6. Deguchi S, Tsujii K, Horikoshi K (2008a) Crystalline-to-amorphous transformation of cellulose in hot and compressed water and its implications for hydrothermal conversion. Green Chem 10:191–196. doi:10.1039/B713655B CrossRefGoogle Scholar
  7. Deguchi S, Tsujii K, Horikoshi K (2008b) Effect of acid catalyst on structural transformation and hydrolysis of cellulose in hydrothermal conditions. Green Chem 10:623–626. doi:10.1039/B803384F CrossRefGoogle Scholar
  8. Ehara K, Saka S (2002) A comparative study on chemical conversion of cellulose between the batch-type and flow-type systems in supercritical water. Cellulose 9:301–311. doi:10.1023/A:1021192711007 CrossRefGoogle Scholar
  9. Fink H, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524. doi:10.1016/S0079-6700(01)00025-9 CrossRefGoogle Scholar
  10. Gross AS, Bell AT, Chu J (2012) Entropy of cellulose dissolution in water and in the ionic liquid 1-butyl-3-methylimidazolim chloride. Phys Chem Chem Phys 14:8425–8430. doi:10.1039/C2CP40417F CrossRefGoogle Scholar
  11. Gruber E, Gruber R (1981) Viskosimetrische bestimmung des polymerisationsgrades von cellulose. Papier 35:133–141Google Scholar
  12. Isogai T, Yanagisawa M, Isogai A (2009) Degrees of polymerization (DP) and DP distribution of cellouronic acids prepared from alkali-treated celluloses and ball-milled native celluloses by TEMPO-mediated oxidation. Cellulose 16:117–127. doi:10.1007/s10570-008-9245-1 CrossRefGoogle Scholar
  13. Japas ML, Franck EU (1985) High pressure phase equilibria and PVT-data of the water-oxygen system including water-air to 673 K and 250 MPa. Ber Bunsen-Ges Phys Chem 89:1268–1275. doi:10.1002/bbpc.19850891206 CrossRefGoogle Scholar
  14. Kabyemela BM, Adschiri T, Malaluan RM, Arai K (1999) Glucose and fructose decomposition in subcritical and supercritical water: detailed reaction pathway, mechanisms, and kinetics. Ind Eng Chem Res 38:2888–2895. doi:10.1021/ie9806390 CrossRefGoogle Scholar
  15. Kalinichev AG (2001) Molecular simulations of liquid and supercritical water: Thermodynamics, structure, and hydrogen bonding. Rev Mineral Geochem 42:83–129. doi:10.2138/rmg.2001.42.4 CrossRefGoogle Scholar
  16. Kruse A (2008) Supercritical water gasification. Biofuels Bioprod Biorefin 2:415–437. doi:10.1002/bbb.93 CrossRefGoogle Scholar
  17. Langan P, Sukumar N, Nishiyama Y, Chanzy H (2005) Synchrotron X-ray structures of cellulose II and regenerated cellulose II at ambient temperature and 100 K. Cellulose 12:551–562. doi:10.1007/s10570-005-9006-3 CrossRefGoogle Scholar
  18. Larsson PT, Wickholm K, Iversen T (1997) A CP/MAS 13C NMR investigation of molecular ordering in celluloses. Carbohydr Res 302:19–25. doi:10.1016/S0008-6215(97)00130-4 CrossRefGoogle Scholar
  19. Lemmon EW, McLinden MO, Friend DG (2013) Thermophysical properties of fluid systems. In: NIST chemistry WebBook. National Institute of Standards and Technology. Available via NIST Standard Reference Database Number 69. http://webbook.nist.gov. Accessed June 13
  20. Leppänen K, Andersson S, Torkkeli M, Knaapila M, Kotelnikova N, Serimaa R (2009) Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 16:999–1015. doi:10.1007/s10570-009-9298-9 CrossRefGoogle Scholar
  21. Marshall WL, Franck EU (1981) Ion product of water substance, 0–1,000 °C, 1–10,000 bars. New international formulation and its background. J Phys Chem Ref Data 10:295–304. doi:10.1063/1.555643 CrossRefGoogle Scholar
  22. Newman RH (2008) Simulation of X-ray diffractograms relevant to the purported polymorphs cellulose IVI and IVII. Cellulose 15:769–778. doi:10.1007/s10570-008-9225-5 CrossRefGoogle Scholar
  23. Parikka M (2004) Global biomass fuel resources. Biomass Bioenerg 27:613–620. doi:10.1016/j.biombioe.2003.07.005 CrossRefGoogle Scholar
  24. Penttilä PA, Varnai A, Leppänen K, Peura M, Kallonen A, Jääskeläinen P, Lucenius J, Ruokolainen J, Siika-aho M, Viikari L, Serimaa R (2010) Changes in submicrometer structure of enzymatically hydrolyzed microcrystalline cellulose. Biomacromolecules 11:1111–1117. doi:10.1021/bm1001119 CrossRefGoogle Scholar
  25. Sasaki M, Kabyemela B, Malaluan R, Hirose S, Takeda N, Adschiri T, Arai K (1998) Cellulose hydrolysis in subcritical and supercritical water. J Supercrit Fluids 13:261–268. doi:10.1016/S0896-8446(98)00060-6 CrossRefGoogle Scholar
  26. Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K (2000) Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Ind Eng Chem Res 39:2883–2890. doi:10.1021/ie990690j CrossRefGoogle Scholar
  27. Sasaki M, Adschiri T, Arai K (2003) Production of cellulose II from native cellulose by near- and supercritical water solubilization. J Agric Food Chem 51:5376–5381. doi:10.1021/jf025989i CrossRefGoogle Scholar
  28. Sasaki M, Adschiri T, Arai K (2004) Kinetics of cellulose conversion at 25 MPa in sub- and supercritical water. AIChE J 50:192–202. doi:10.1002/aic.10018 CrossRefGoogle Scholar
  29. Schelosky N, Roeder T, Baldinger T (1999) Molecular mass distribution of cellulosic products by size exclusion chromatography in DMAc/LiCl. Papier 53:728–738Google Scholar
  30. Sharples A (1957) The hydrolysis of cellulose and its relation to structure. Trans Faraday Soc 53:1003–1013. doi:10.1039/TF9575301003 CrossRefGoogle Scholar
  31. Sharples A (1958) The hydrolysis of cellulose and its relation to structure part 2. Trans Faraday Soc 54:913–917. doi:10.1039/TF9585400913 CrossRefGoogle Scholar
  32. Siegenthaler U, Sarmiento JL (1993) Atmospheric carbon dioxide and the ocean. Nature (London) 365:119–125. doi:10.1038/365119a0 CrossRefGoogle Scholar
  33. Tolonen LK, Zuckerstatter G, Penttilä PA, Milacher W, Habicht W, Serimaa R, Kruse A, Sixta H (2011) Structural changes in microcrystalline cellulose in subcritical water treatment. Biomacromolecules 12:2544–2551. doi:10.1021/bm200351y CrossRefGoogle Scholar
  34. Uematsu M, Franck EU (1980) Static dielectric constant of water and steam. J Phys Chem Ref Data 9:1291–1306. doi:10.1063/1.555632 CrossRefGoogle Scholar
  35. Wickholm K, Larsson PT, Iversen T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. Carbohydr Res 312:123–129. doi:10.1016/S0008-6215(98)00236-5 CrossRefGoogle Scholar
  36. Yu Y, Wu H (2009) Characteristics and precipitation of glucose oligomers in the fresh liquid products obtained from the hydrolysis of cellulose in hot-compressed water. Ind Eng Chem Res 48:10682–10690. doi:10.1021/ie900768m CrossRefGoogle Scholar
  37. Zuckerstätter G, Schild G, Wollboldt P, Röder T, Weber HK, Sixta H (2009) The elucidation of cellulose supramolecular structure by CP/MAS 13C NMR. Lenzinger Berichte 87:38–46Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Lasse K. Tolonen
    • 1
  • Paavo A. Penttilä
    • 2
  • Ritva Serimaa
    • 2
  • Andrea Kruse
    • 3
    • 4
  • Herbert Sixta
    • 1
  1. 1.Department of Forest Products TechnologyAalto UniversityEspooFinland
  2. 2.Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  3. 3.Institute of Agricultural Engineering, Conversion Technology and Life Cycle Assessment of Renewable Resources (440f)University of HohenheimStuttgartGermany
  4. 4.Institute for Catalysis Research and TechnologyKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations