Cellulose

, Volume 20, Issue 6, pp 2959–2970 | Cite as

Membrane characterization and solute diffusion in porous composite nanocellulose membranes for hemodialysis

  • Natalia Ferraz
  • Anastasiya Leschinskaya
  • Farshad Toomadj
  • Bengt Fellström
  • Maria Strømme
  • Albert Mihranyan
Original Paper

Abstract

The membrane and solute diffusion properties of Cladophora cellulose and polypyrrole (PPy) functionalized Cladophora cellulose were analyzed to investigate the feasibility of using electroactive membranes in hemodialysis. The membranes were characterized with scanning electron microscopy, ζ-potentiometry, He-pycnometry, N2 gas adsorption, and Hg porosimetry. The diffusion properties across the studied membranes for three model uremic toxins, i.e. creatinine, vitamin B12 and bovine serum albumin, were also analyzed. The characterization work revealed that the studied membranes present an open structure of weakly negatively charged nanofibers with an average pore size of 21 and 53 nm for pristine cellulose and PPy-Cladophora cellulose, respectively. The results showed that the diffusion of uremic toxins across the PPy-Cladophora cellulose membrane was faster than through pure cellulose membrane, which was related to the higher porosity and larger average pore size of the former. Since it was found that the average pore size of the membranes was larger than the hydrodynamic radius of the studied model solutes, it was concluded that these types of membranes are favorable to expand the Mw spectrum of uremic toxins to also include conditions associated with accumulation of large pathologic proteins during hemodialysis. The large average pore size of the composite membrane could also be exploited to ensure high-fluxes of solutes through the membrane while simultaneously extracting ions by an externally applied electric current.

Keywords

Nanocellulose Electroactive membranes Hemodialysis Cladophora cellulose Polypyrrole 

Notes

Acknowledgments

The Swedish Research Council (Vetenskapsrådet), the Bo Rydin Foundation, the Carl Trygger Foundation, the Swedish Foundation for Strategic Research, and the Lars Hiertas Minne Foundation are gratefully acknowledged for their support.

References

  1. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations form nitrogen isotherms. J Am Chem Soc 73(1):373–380CrossRefGoogle Scholar
  2. Block GA, Hulbert-Shearon TE, Levin NW, Port FK (1998) Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis 31(4):607–617CrossRefGoogle Scholar
  3. Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM (2004) Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol 15(8):2208–2218CrossRefGoogle Scholar
  4. Bowry SK (2002) Dialysis membranes today. Int J Artif Organs 25(5):447–460Google Scholar
  5. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319CrossRefGoogle Scholar
  6. Carlsson DO, Nyström G, Zhou Q, Berglund LA, Nyholm L, Stromme M (2012) Electroactive nanofibrillated cellulose aerogel composites with tunable structural and electrochemical properties. J Mater Chem 22(36):19014–19024CrossRefGoogle Scholar
  7. Carlsson DO, Sjödin M, Nyholm L, Strømme M (2013) A comparative study of the effects of rinsing and aging of polypyrrole/nanocellulose composites on their electrochemical properties. J Phys Chem B 117(14):3900–3910CrossRefGoogle Scholar
  8. Conder JR, Hayek BO (2000) Adsorption kinetics and equilibria of bovine serum albumin on rigid ion-exchange and hydrophobic interaction chromatography matrices in a stirred cell. Biochem Eng J 6(3):215–223CrossRefGoogle Scholar
  9. Coppo R, Amore A, Cirina P, Scelfo B, Giacchno F, Comune L, Atti M, Renaux JL (2000) Bradykinin and nitric oxide generation by dialysis membranes can be blunted by alkaline rinsing solutions. Kidney Int 58(2):881–888CrossRefGoogle Scholar
  10. Ferraz N, Carlsson DO, Hong J, Larsson R, Fellström B, Nyholm L, Strømme M, Mihranyan A (2012a) Haemocompatibility and ion exchange capability of nanocellulose polypyrrole membranes intended for blood purification. J R Soc Interface 9(73):1943–1955CrossRefGoogle Scholar
  11. Ferraz N, Strømme M, Fellström B, Pradhan S, Nyholm L, Mihranyan A (2012b) In vitro and in vivo toxicity of rinsed and aged nanocellulose-polypyrrole composites. J Biomed Mater Res Part A 100(8):2128–2138CrossRefGoogle Scholar
  12. Fissell WH, Humes HD, Fleischman AJ, Roy S (2007) Dialysis and nanotechnology: now, 10 years, or never? Blood Purif 25:12–17CrossRefGoogle Scholar
  13. Foley RN, Parfrey PS, Harnett JD, Kent GM, Murray DC, Barre PE (1996) Hypoalbuminemia, cardiac morbidity, and mortality in end-stage renal disease. J Am Soc Nephrol 7(5):728–736Google Scholar
  14. Frigon RP, Leypoldt JK, Uyeji S, Henderson LW (1983) Disparity between stokes radii of dextrans and proteins as determined by retention volume in gel permeation chromatography. Anal Chem 55(8):1349–1354CrossRefGoogle Scholar
  15. Gelin K, Mihranyan A, Razaq A, Nyholm L, Strømme M (2009) Potential controlled anion absorption in a novel high surface area composite of Cladophora cellulose and polypyrrole. Electrochim Acta 54(12):3394–3401CrossRefGoogle Scholar
  16. Han CC, Ziya Akcasu A (1981) Concentration dependence of diffusion coefficient at various molecular weights and temperatures. Polymer 22(9):1165–1168CrossRefGoogle Scholar
  17. Harland RS, Peppas NA (1989) Solute diffusion in swollen membranes VII. Diffusion in semicrystalline networks. Colloid Polym Sci 267(3):218–225CrossRefGoogle Scholar
  18. Hedayat A, Elmoselhi H, Shoker A (2012) Theoretical application of irreversible (Nonequilibrium) thermodynamic principles to enhance solute fluxes across nanofabricated hemodialysis membranes. Int J Nephrol 2012. doi: 10.1155/2012/718085
  19. Humes HD, Fissell WH, Tiranathanagul K (2006) The future of hemodialysis membranes. Kidney Int 69:1115–1119CrossRefGoogle Scholar
  20. ISO-8637:2010 (2010) Cardiovascular implants and extracorporeal systems: haemodialysers, haemodiafilters, haemofilters and haemoconcentrators. TC150/SC2. International Organization for Standardization, Geneva, SwitzerlandGoogle Scholar
  21. Jagur-Grodzinski J (2012) Biomedical applications of electrically conductive polymeric systems. E-Polymers 12(1):722–740Google Scholar
  22. Klinke B, Rockel A, Abdelhamid S, Fiegel P, Walb D (1989) Transmembranous transport and adsorption of beta-2-microglobulin during hemodialysis using polysulfone, polyacrylonitrile, polymethylmethacrylate and cuprammonium rayon membranes. Int J Artif Organs 12(11):697–702Google Scholar
  23. Kokubo K, Otani Y, Tsukao H, Shibo T, Hirose M, Kobayashi H (2009) Urea concentrating ability of artificial renal tubule based on countercurrent multiplier system using electrodialysis, dialysis and filtration. IFMBE Proc 25(7):499–501CrossRefGoogle Scholar
  24. Krieter DH, Canaud B (2003) High permeability of dialysis membranes: what is the limit of albumin loss? Nephrol Dial Transpl 18(4):651–654. doi: 10.1093/ndt/gfg054 CrossRefGoogle Scholar
  25. Kuhlmann MK (2010) Phosphate elimination in modalities of hemodialysis and peritoneal dialysis. Blood Purif 29(2):137–144CrossRefGoogle Scholar
  26. Leonard EF, West AC, Shapley NC, Larsen MU (2004) Dialysis without membranes: how and why? Blood Purif 22:92–100CrossRefGoogle Scholar
  27. Leonard EF, Cortell S, Vitale NG (2005) Membraneless dialysis—is it possible? Contrib Nephrol 149:343–353CrossRefGoogle Scholar
  28. Liljegren G, Pettersson J, Markides KE, Nyholm L (2002) Electrochemical solid-phase microextraction of anions and cations using polypyrrole coatings and an integrated three-electrode device. Analyst 127(5):591–597CrossRefGoogle Scholar
  29. Loh IH, Moody RA, Huang JC (1990) Electrically conductive membranes: synthesis and applications. J Membr Sci 50(1):31–49CrossRefGoogle Scholar
  30. Mihranyan A (2011) Cellulose from Cladophorales green algae: from environmental problem to high-tech composite materials. J Appl Polym Sci 119(4):2449–2460CrossRefGoogle Scholar
  31. Mihranyan A, Edsman K, Strømme M (2007) Rheological properties of cellulose hydrogels prepared from Cladophora cellulose powder. Food Hydrocoll 21(2):267–272CrossRefGoogle Scholar
  32. Mihranyan A, Nyholm L, Garcia Bennett AE, Strømme M (2008) A novel high specific surface area conducting paper material composed of polypyrrole and Cladophora cellulose. J Phys Chem B 112(39):12249–12255CrossRefGoogle Scholar
  33. Mihranyan A, Esmaeili M, Razaq A, Alexeichik D, Lindström T (2012) Influence of the nanocellulose raw material characteristics on the electrochemical and mechanical properties of conductive paper electrodes. J Mater Sci 47(10):4463–4472CrossRefGoogle Scholar
  34. Nilsson B, Korsgren O, Lambris JD, Ekdahl KN (2010) Can cells and biomaterials in therapeutic medicine be shielded from innate immune recognition? Trends Immunol 31(1):32–38Google Scholar
  35. Nissenson AR, Ronco C, Pergamit G et al (2005) Continuously functioning artificial nephron system: the promise of nanotechnology. Hemodial Int 9:210–217CrossRefGoogle Scholar
  36. Ofsthun NJ (2000) Limitations of membrane structure and dialyzer design on large solute removal in dialysis. Blood Purif 18(4):264–266CrossRefGoogle Scholar
  37. Owen WF Jr, Lew NL, Liu Y, Lowrie EG, Lazarus JM (1993) The urea reduction ratio and serum albumin concentration as predictors of mortality in patients undergoing hemodialysis. N Engl J Med 329(14):1001–1006CrossRefGoogle Scholar
  38. Pirot F, Faivre V, Bourhis Y, Aulagner G, Falson F (2002) Faster phenytoin removal from serum by electrodialysis: a potential use in hemodialysis? J Membr Sci 207:265–272CrossRefGoogle Scholar
  39. Polaschegg HD (2010) Hemodialysis machine technology: a global overview. Expert Rev Med Devices 7(6):793–810CrossRefGoogle Scholar
  40. Razaq A, Mihranyan A, Welch K, Nyholm L, Strømme M (2009) Influence of the type of oxidant on anion exchange properties of fibrous Cladophora cellulose/polypyrrole composites. J Phys Chem B 113(2):426–433CrossRefGoogle Scholar
  41. Razaq A, Nyström G, Strømme M, Mihranyan A, Nyholm L (2011a) High-capacity conductive nanocellulose paper sheets for electrochemically controlled extraction of DNA oligomers. PLoS One 6(12):e29243. doi: 10.1371/journal.pone.0029243
  42. Razaq A, Strømme M, Nyholm L, Mihranyan A (2011b) Electrochemically controlled separation of DNA oligomers with high surface area conducting paper electrode. In, pp 135–142Google Scholar
  43. Rubino S, Razaq A, Nyholm L, Strømme M, Leifer K, Mihranyan A (2010) Spatial mapping of elemental distributions in polypyrrole-cellulose nanofibers using energy-filtered transmission electron microscopy. J Phys Chem B 114(43):13644–13649CrossRefGoogle Scholar
  44. Schaefer RM, Fink E, Schaefer L, Barkhausen R, Kulzer P, Heidland A (1993) Role of bradykinin in anaphylactoid reactions during hemodialysis with AN69 dialyzers. Am J Nephrol 13(6):473–477CrossRefGoogle Scholar
  45. Schmid H, Schiffl H (2012) Hemodiafiltration and survival of end-stage renal disease patients: the long journey goes on. Int Urol Nephrol 44(5):1435–1440CrossRefGoogle Scholar
  46. Sharma AC, Jana T, Kesavamoorthy R, Shi L, Virji MA, Finegold DN, Asher SA (2004) A general photonic crystal sensing motif: creatinine in bodily fluids. J Am Chem Soc 126(9):2971–2977CrossRefGoogle Scholar
  47. Shi W, Ma Y, Song C, Jiang H, Ru X, Tu J, Jiang S, Wang J, Ge D (2010) Affinity electromembrane: electrically facilitated adsorption. J Membr Sci 354(1–2):86–92CrossRefGoogle Scholar
  48. Smith AL, Berkowitz HD, Bluemle LWJ (1964) Electrodialysis of blood: evaluation of a high capacity unit. Trans Am Soc Artif Intern Organs 10(1):273–279 Google Scholar
  49. Stamopoulos D (2008) Magnetic nanoparticles utilized in hemodialysis for the treatment if hyperhomocysteinemia: the new challenge for nanobiotechnology. Curr Nanosci 4:302–307CrossRefGoogle Scholar
  50. Strømme M, Frenning G, Razaq A, Gelin K, Nyholm L, Mihranyan A (2009) Ionic motion in polypyrrole-cellulose composites: trap release mechanism during potentiostatic reduction. J Phys Chem B 113(14):4582–4589CrossRefGoogle Scholar
  51. Tijink MSL, Wester M, Sun J, Saris A, Bolhuis-Versteeg AM, Saiful S, Joles JA, Borneman Z, Wessling M, Stamatialis DF (2012) A novel approach for blood purification: mixed-matrix combining diffusion and adsorption in one step. Acta Biomater 8:2279–2287CrossRefGoogle Scholar
  52. Vanholder R, Argilés A, Baurmeister U, Brunet P, Clark W, Cohen G, De Deyn PP, Deppisch R, Descamps-Latscha B, Henle T, Jörres A, Massy ZA, Rodriguez M, Stegmayr B, Stenvinkel P, Wratten ML (2001) Uremic toxicity: present state of the art. Int J Artif Organs 24(10):695–725Google Scholar
  53. Vanholder R, Baurmeister U, Brunet P, Cohen G, Glorieux G, Jankowski J (2008) A bench to bedside view of uremic toxins. J Am Soc Nephrol 19(5):863–870CrossRefGoogle Scholar
  54. Vienken J (2002) Polymers in nephrology: characteristics and needs. Int J Artif Organs 25(5):470–479Google Scholar
  55. Wang J, Shi W, Jiang H, Wu G, Ruan C, Ge D (2011) Heparin-doped affinity electromembranes for thrombin purification. J Membr Sci 373(1–2):89–97CrossRefGoogle Scholar
  56. Wang J, Wu G, Shi W, Liu X, Ruan C, Xue M, Ge D (2013) Affinity electromembrane with covalently coupled heparin for thrombin adsorption. J Membr Sci 428:70–77CrossRefGoogle Scholar
  57. Ward RA (2005) Protein-leaking membranes for hemodialysis: a new class of membranes in search of an application? J Am Soc Nephrol 16(8):2421–2430. doi: 10.1681/asn.2005010070 CrossRefGoogle Scholar
  58. Zhang W, Furusaki S (2001) On the evaluation of diffusivities in gels using the diffusion cell technique. Biochem Eng J 9(1):73–82CrossRefGoogle Scholar
  59. Zweigart C, Neubauer M, Storr M, Böhler T, Krause B (2010) Progress in the development of membranes for kidney-replacement therapy. In: Drioli E, Giorno L (eds) Comprehensive membrane science and engineering, vol 2. Elsevier B.V, Oxford, UK, pp 351–390CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Natalia Ferraz
    • 1
  • Anastasiya Leschinskaya
    • 1
  • Farshad Toomadj
    • 1
  • Bengt Fellström
    • 2
  • Maria Strømme
    • 1
  • Albert Mihranyan
    • 1
  1. 1.Nanotechnology and Functional Materials, Department of Engineering SciencesUppsala UniversityUppsalaSweden
  2. 2.Renal Medicine, Department of Medical SciencesUppsala University HospitalUppsalaSweden

Personalised recommendations