Advertisement

Cellulose

, Volume 20, Issue 6, pp 2765–2778 | Cite as

Design and characterization of cellulose fibers with hierarchical structure for polymer reinforcement

  • Abdelghani Hajlane
  • Hamid Kaddami
  • Roberts Joffe
  • Lennart Wallström
Original Paper

Abstract

This paper describes an approach to manufacture hierarchical composites from environmentally friendly materials by grafting cellulose whiskers onto regenerated cellulose fibers (Cordenka 700). Fourier Transform Infrared spectroscopy, Scanning Electron Microscopy and X-ray diffraction analysis were performed to verify the degree of modification. The mechanical properties of the unmodified and modified fibers were analyzed using fiber bundle tensile static and loading–unloading tests. To show the effect of cellulose whiskers grafting on the Cordenka fibers, epoxy based composites were manufactured and tensile tests done on transverse uni-directional specimens. The mechanical properties were significantly increased by fiber modification and addition of the nano-phase into composite reinforced with micro-sized fibers.

Keywords

Cellulose Nanowhiskers Composites Interfaces Mechanical properties 

Notes

Acknowledgments

The authors would like to thank Hassan II Academy of Science and Technologies, the Swedish Research Council (Ref. Nr. 2009-6433) and CNRST-Morocco for their financial support. The authors would like to thank Dr Z. OUNAIES from Pennsylvania State University for ATR-FTIR analyses.

References

  1. Abdelmouleh M, Boufi S, Ben Salah A, Belgacem MN, Gandini A (2002) Interaction of silane coupling agents with cellulose. Langmuir 18(8):3203–3208CrossRefGoogle Scholar
  2. Andersons J, Spārniņš E, Joffe R, Wallström L (2005) Strength distribution of elementary flax fibres. Compos Sci Technol 65(3):693–702CrossRefGoogle Scholar
  3. Belgacem MN, Gandini A (2005) The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Compos Interfaces 12(1–2):41–75CrossRefGoogle Scholar
  4. Bendahou A, Kaddami H, Dufresne A (2010) Investigation on the effect of cellulosic nanoparticles’ morphology on the properties of natural rubber based nanocomposites. Eur Polym J 46(4):609–620CrossRefGoogle Scholar
  5. Bledzki A, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24(2):221–274CrossRefGoogle Scholar
  6. Britcher LG, Kehoe DC, Matisons JG, Swincer AG (1995) Siloxane coupling agents. Macromolecules 28(9):3110–3118CrossRefGoogle Scholar
  7. Castellano M, Gandini A, Fabbri P, Belgacem M (2004) Modification of cellulose fibres with organosilanes: under what conditions does coupling occur? J Colloid Interface Sci 273(2):505–511CrossRefGoogle Scholar
  8. Daniels M, Francis L (1998) Silane adsorption behavior, microstructure, and properties of glycidoxypropyltrimethoxysilane-modified colloidal silica coatings. J Colloid Interface Sci 205(1):191–200CrossRefGoogle Scholar
  9. Davidson TC, Newman RH, Ryan MJ (2004) Variations in the fibre repeat between samples of cellulose I from different sources. Carbohydr Res 339(18):2889–2893CrossRefGoogle Scholar
  10. Gilbert R, Kadla J (1998) Polysaccharides—cellulose. In: Biopolymers from renewable resources. Springer, New York, pp 47–95Google Scholar
  11. Gilbert R, Kadla JF (2000) Cellulose structure: a review. Cellulose chemistry and technology 34(3–4):197–216Google Scholar
  12. Green KJ, Dean DR, Vaidya UK, Nyairo E (2009) Multiscale fiber reinforced composites based on a carbon nanofiber/epoxy nanophased polymer matrix: synthesis, mechanical, and thermomechanical behavior. Compos Part A Appl Sci Manuf 40(9):1470–1475CrossRefGoogle Scholar
  13. Hashimoto T, Kawasaki H, Kawai H (1978) Crystal and amorphous orientation behavior of poly (chlorotrifluoroethylene) films in relation to crystalline superstructure. J Polym Sci Polym Phys Ed 16(2):271–288CrossRefGoogle Scholar
  14. Hermans P (1951) X-ray investigations on the crystallinity of cellulose. Die Makromolekulare Chemie 6(1):25–29CrossRefGoogle Scholar
  15. Jafarpour G, Roig F, Dantras E, Boudet A, Lacabanne C (2009) Influence of water on localized and delocalized molecular mobility of cellulose. J Non-Crystal Solid 355:1669–1672Google Scholar
  16. Jia X, Li G, Liu B, Luo Y, Yang G, Yang X (2013) Multiscale reinforcement and interfacial strengthening on epoxy-based composites by silica nanoparticle-multiwalled carbon nanotube complex. Compos Part A Appl Sci Manuf 48:101–109CrossRefGoogle Scholar
  17. Joffe R, Andersons J, Wallström L (2003) Strength and adhesion characteristics of elementary flax fibres with different surface treatments. Compos Part A Appl Sci Manuf 34(7):603–612CrossRefGoogle Scholar
  18. Johansson C, Bras J, Mondragon I, Nechita P, Plackett D, Simon P, Svetec DG, Virtanen S, Baschetti MG, Breen C, Clegg F, Aucejo S (2012) Renewable fibers and bio-based materials for packaging applications–a review of recent developments. BioResources 7(2):2506–2552Google Scholar
  19. Kato K, Vasilets VN, Fursa MN, Meguro M, Ikada Y, Nakamae K (1999) Surface oxidation of cellulose fibers by vacuum ultraviolet irradiation. J Polym Sci Part A Polym Chem 37(3):357–361CrossRefGoogle Scholar
  20. Khalifa BA, Abdel-Zaher N, Shoukr FS (1991) Crystalline character of native and chemically treated Saudi Arabian cotton fibers. Text Res J 61(10):602–608CrossRefGoogle Scholar
  21. Lee K-Y, Ho KK, Schlufter K, Bismarck A (2012) Hierarchical composites reinforced with robust short sisal fibre performs utilising bacterial cellulose as binder. Compos Sci Technol 72(13):1479–1486CrossRefGoogle Scholar
  22. Lilholt H, Lawther J (2000) Natural organic fibers. Compr Compos Mater 1:303–325CrossRefGoogle Scholar
  23. Ly B, Thielemans W, Dufresne A, Chaussy D, Belgacem M (2008) Surface functionalization of cellulose fibres and their incorporation in renewable polymeric matrices. Compos Sci Technol 68(15):3193–3201CrossRefGoogle Scholar
  24. Magurno A (1999) Vegetable fibres in automotive interior components. Die Angewandte Makromolekulare Chemie 272(1):99–107CrossRefGoogle Scholar
  25. Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184:632–633Google Scholar
  26. Marsh G (2003) Next step for automotive materials. Mater Today 6(4):36–43CrossRefGoogle Scholar
  27. Mattsson D, Joffe R, Varna J (2007) Methodology for characterization of internal structure parameters governing performance in NCF composites. Compos Part B Eng 38(1):44–57CrossRefGoogle Scholar
  28. Miller JD, Kp Hoh, Ishida H (1984) Studies of the simulation of silane coupling agent structures on particulate fillers; the pH effect. Polym Compos 5(1):18–28CrossRefGoogle Scholar
  29. Mohanty A, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276(1):1–24CrossRefGoogle Scholar
  30. Morton WE, Hearle JW (1993) Physical properties of textile fibres. Textile institute, ManchesterGoogle Scholar
  31. Ouajai S, Shanks R (2005) Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polym Degrad Stab 89(2):327–335CrossRefGoogle Scholar
  32. Pommet M, Juntaro J, Heng JY, Mantalaris A, Lee AF, Wilson K, Kalinka G, Shaffer MS, Bismarck A (2008) Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites. Biomacromolecules 9(6):1643–1651CrossRefGoogle Scholar
  33. Rodriguez AJ, Guzman ME, Lim C-S, Minaie B (2011) Mechanical properties of carbon nanofiber/fiber-reinforced hierarchical polymer composites manufactured with multiscale-reinforcement fabrics. Carbon 49(3):937–948CrossRefGoogle Scholar
  34. Roncero MB, Torres AL, Colom JF, Vidal T (2005) The effect of xylanase on lignocellulosic components during the bleaching of wood pulps. Bioresour Technol 96(1):21–30CrossRefGoogle Scholar
  35. Sang Y, Xiao H (2009) Preparation and application of cationic cellulose fibers modified by in situ grafting of cationic PVA. Colloids Surf A 335(1):121–127CrossRefGoogle Scholar
  36. Szcześniak L, Rachocki A, Tritt-Goc J (2008) Glass transition temperature and thermal decomposition of cellulose powder. Cellulose 15(3):445–451Google Scholar
  37. Segal L, Creely J, Martin A, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794CrossRefGoogle Scholar
  38. Summerscales J, Dissanayake NP, Virk AS, Hall W (2010) A review of bast fibres and their composites. Part 1—fibres as reinforcements. Compos Part A Appl Sci Manuf 41(10):1329–1335CrossRefGoogle Scholar
  39. Valadez-Gonzalez A, Cervantes-Uc J, Olayo R, Herrera-Franco P (1999) Chemical modification of henequen fibers with an organosilane coupling agent. Compos Part B Eng 30(3):321–331CrossRefGoogle Scholar
  40. Vrancken KC, De Coster L, Van Der Voort P, Grobet PJ, Vansant EF (1995) The role of silanols in the modification of silica gel with aminosilanes. J Colloid Interface Sci 170(1):71–77CrossRefGoogle Scholar
  41. Wise LE, Murphy M, d’Addieco AA (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade J 122(2):35Google Scholar
  42. Xie Y, Hill CA, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos Part A Appl Sci Manuf 41(7):806–819CrossRefGoogle Scholar
  43. Zhao F, Huang Y, Liu L, Bai Y, Xu L (2011) Formation of a carbon fiber/polyhedral oligomeric silsesquioxane/carbon nanotube hybrid reinforcement and its effect on the interfacial properties of carbon fiber/epoxy composites. Carbon 49(8):2624–2632CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Abdelghani Hajlane
    • 1
    • 2
  • Hamid Kaddami
    • 1
  • Roberts Joffe
    • 2
  • Lennart Wallström
    • 2
  1. 1.Laboratory of Organometallic and Macromolecular Chemistry-Composite Materials, Faculty of Sciences and TechniquesCadi Ayyad UniversityMarrakechMorocco
  2. 2.Division of Materials Science, Department of Engineering Sciences and MathematicsLuleå University of TechnologyLuleåSweden

Personalised recommendations