Cellulose

, Volume 20, Issue 6, pp 2667–2674

Fabrication and characterization of nanocrystalline cellulose films prepared under vacuum conditions

  • Hao Tang
  • Bin Guo
  • Haitian Jiang
  • Lan Xue
  • Bengang Li
  • Xuzhi Cao
  • Qisheng Zhang
  • Panxin Li
Communication

Abstract

When dried under ambient conditions, the self-assembled chiral nematic arrangement of nanocrystalline cellulose (NCC) in suspension can be preserved in NCC films that can reflect light at specific wavelengths, but the process is slow. Rapid preparation of NCC films was first proposed to cast under vacuum conditions to accelerate water evaporation rates and shorten the drying time. Vacuum preparation of NCC films has been found to not only retain the self-assembled structure but to also increase the chiral nematic pitch and red-shift the reflection wavelength of the films. This method provides a new path to prepare NCC iridescent films with tunable reflection wavelengths and reduced time in many areas.

Keywords

Nanocrystalline cellulose Iridescent films Vacuum condition Rapid preparation 

References

  1. Araki J, Kuga S (2001) Effect of trace electrolyte on liquid crystal type of cellulose microcrystals. Langmuir 17(15):4493–4496CrossRefGoogle Scholar
  2. Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Coll Surf A 142(1):75–82CrossRefGoogle Scholar
  3. Araki J, Wada M, Kuga S, Okano T (2000) Birefringent glassy phase of cellulose microcrystal suspension. Langumir 16(6):2413–2415CrossRefGoogle Scholar
  4. Beck S, Bouchard J, Berry R (2010) Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. Biomacromolecules 12(1):167–172CrossRefGoogle Scholar
  5. Beck S, Bouchard J, Chauve G, Berry R (2013) Controlled production of patterns in iridescent solid films. Cellulose 20(3):1401–1411CrossRefGoogle Scholar
  6. Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048–1054CrossRefGoogle Scholar
  7. De Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25(7):771–787CrossRefGoogle Scholar
  8. Dong XM, Gray DG (1997) Effect of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir 13(8):2404–2409CrossRefGoogle Scholar
  9. Dong XM, Kimura T, Revol TF, Gray DG (1996) Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12(8):2076–2082CrossRefGoogle Scholar
  10. Dong XM, Revol JF, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1):19–32CrossRefGoogle Scholar
  11. Edgar CD, Gray DG (2001) Induced circular dichroism of chiral nematic cellulose films. Cellulose 8(1):5–12CrossRefGoogle Scholar
  12. Eichhorn SJ, Dufresne A, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonse J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33CrossRefGoogle Scholar
  13. Gong G, Mathew AP, Oksman K (2009) Preparation of nanocellulose with high aspect ratio from wood. Fokusomradet Materialvetenskap 4:e konferensen om maerialforskning pa LTU, 25 Nov 2009Google Scholar
  14. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500CrossRefGoogle Scholar
  15. Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal system from fibrillar polysaccharides. Nature 184(4686):632–633CrossRefGoogle Scholar
  16. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefGoogle Scholar
  17. Pan JH, Hamad W, Straus SK (2010) Parameters affecting the chiral nematic phase of nanocrystalline cellulose films. Macromolecules 43(8):3851–3858CrossRefGoogle Scholar
  18. Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 9999:1–16Google Scholar
  19. Revol JF, Bradfors H, Giassion J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172CrossRefGoogle Scholar
  20. Revol JF, Godbout L, Gray DG (1997) Solidified liquid crystals of cellulose with optically variable properties. USP 5629005Google Scholar
  21. Shopsowitz KE, Qi H, Hamad WY, MacLachian MJ (2010) Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468:422–426CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Hao Tang
    • 1
  • Bin Guo
    • 1
    • 3
  • Haitian Jiang
    • 1
  • Lan Xue
    • 1
  • Bengang Li
    • 1
  • Xuzhi Cao
    • 1
  • Qisheng Zhang
    • 2
    • 3
  • Panxin Li
    • 3
    • 4
  1. 1.College of ScienceNanjing Forestry UniversityNanjingChina
  2. 2.College of Wood Science and TechnologyNanjing Forestry UniversityNanjingChina
  3. 3.Agricultural and Forest Products Processing Academician Workstation of Henan ProvinceLuoheChina
  4. 4.Post-Doctoral Research Center of Nanjiecun GroupLuoheChina

Personalised recommendations