, Volume 21, Issue 2, pp 909–926 | Cite as

Quantum mechanical calculations on cellulose–water interactions: structures, energetics, vibrational frequencies and NMR chemical shifts for surfaces of Iα and Iβ cellulose

  • James D. Kubicki
  • Heath D. Watts
  • Zhen Zhao
  • Linghao Zhong
Original Paper


Periodic and molecular cluster density functional theory calculations were performed on the Iα (001), Iα (021), Iβ (100), and Iβ (110) surfaces of cellulose with and without explicit H2O molecules of hydration. The energy-minimized H-bonding structures, water adsorption energies, vibrational spectra, and 13C NMR chemical shifts are discussed. The H-bonded structures and water adsorption energies (ΔEads) are used to distinguish hydrophobic and hydrophilic cellulose–water interactions. O–H stretching vibrational modes are assigned for hydrated and dry cellulose surfaces. Calculations of the 13C NMR chemical shifts for the C4 and C6 surface atoms demonstrate that these δ13C4 and δ13C6 values can be upfield shifted from the bulk values as observed without rotation of the hydroxymethyl groups from the bulk tg conformation to the gt conformation as previously assumed.


Density functional theory Nuclear magnetic resonance Surface Infrared Raman Water 



This work was supported by the U.S. Department of Energy grant for the Energy Frontier Research Center in Lignocellulose Structure and Formation (CLSF) from the Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001090. The authors also thank Yoshiharu Nishiyama for suggesting DFT-D2 calculations as a methodology for modeling cellulose. We also acknowledge discussions with Roger Newman and Mike Jarvis as well as numerous CLSF participants that improved the manuscript. Computational support was provided by the Research Computation and Cyberinfrastructure group at The Pennsylvania State University.

Supplementary material

10570_2013_29_MOESM1_ESM.docx (3.9 mb)
Supplementary material 1 (DOCX 3967kb)


  1. Accelrys Inc. (2012) Materials Studio 5.5. San Diego, CAGoogle Scholar
  2. Adamo C, Barone V, Introduction I (1998) Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models. J Chem Phys 108:664–675CrossRefGoogle Scholar
  3. Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A (2011) Biochemistry of the cell wall molecules. In: Plant cell walls: from chemistry to biology. Garland Science, Taylor & Francis Group, LLC, NY, pp 67–118Google Scholar
  4. Alecu IM, Zheng J, Zhao Y, Truhlar DG (2010) Computational thermochemistry: scale factor databases and scale factors for vibrational frequencies obtained from electronic model chemistries. J Chem Theory Comput 6:2872–2887CrossRefGoogle Scholar
  5. Blackwell J (1977) Infrared and Raman spectroscopy of cellulose. In: Aurthur J (ed) Cellulose chemistry and technology, ACS symposium series. American Chemical Society, Washington, DC, pp 206–218CrossRefGoogle Scholar
  6. Brizuela AB, Bichara LC, Romano E, Yurquina A, Locatelli S, Brandán SA (2012) A complete characterization of the vibrational spectra of sucrose. Carbohydr Res 361:212–218CrossRefGoogle Scholar
  7. Bućko T, Tunega D, Ángyán JG, Hafner J (2011) Ab initio study of structure and interconversion of native cellulose phases. J Phys Chem A 115:10097–10105CrossRefGoogle Scholar
  8. Buhl M, Kaupp M, Malkina OL, Malkin VG (1999) The DFT route to NMR chemical shifts. J Comput Chem 20:91–105CrossRefGoogle Scholar
  9. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620CrossRefGoogle Scholar
  10. Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996) A comparison of models for calculating nuclear magnetic resonance shielding tensors. J Chem Phys 104:5497–5509CrossRefGoogle Scholar
  11. Cirtog M, Alikhani ME, Madebène B, Soulard P, Asselin P, Tremblay B (2011) Bonding nature and vibrational signatures of oxirane:(water)n = 1–3. Assessment of the performance of the dispersion-corrected DFT methods compared to the ab initio results and Fourier transform infrared experimental data. J Phys Chem A 115:6688–6701CrossRefGoogle Scholar
  12. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+ G basis set for first-row elements, Li-F. J Comput Chem 4:294–301CrossRefGoogle Scholar
  13. Cremer D, Pople JA (1975) A general definition of ring puckering coordinates. J Am Chem Soc 97:1354–1358CrossRefGoogle Scholar
  14. Davidson TC, Newman RH, Ryan MJ (2004) Variations in the fibre repeat between samples of cellulose I from different sources. Carbohydr Res 339:2889–2893CrossRefGoogle Scholar
  15. Dick-Pérez M, Zhang Y, Hayes J, Salazar A, Zabotina OA, Hong M (2011) Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry 50:989–1000CrossRefGoogle Scholar
  16. Eck B (2012) wxDragon 1.8.0-reg. Copyright 1994–2012 mbBGoogle Scholar
  17. Erata T, Shikano T, Yunoki S, Takai M (1997) The complete assignment of the 13C CP/MAS NMR spectrum of native cellulose by using 13C labeled glucose. Cellul Commun 4:128–131Google Scholar
  18. Fekri N, Khayami M, Heidari R, Jamee R (2008) Chemical analysis of flax seed, sweet basil, dragon head and quince seed mucilages. Res J Biol Sci 3:166–170Google Scholar
  19. Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperely DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci USA 108:E1195–E1203CrossRefGoogle Scholar
  20. French AD, Csonka GI (2011) Hydroxyl orientations in cellobiose and other polyhydroxyl compounds: modeling versus experiment. Cellulose 18(4):897–909CrossRefGoogle Scholar
  21. French AD, Johnson GP, Cramer CJ, Csonka GI (2012) Conformational analysis of cellobiose by electronic structure theories. Carbohydr Res 350:68–76CrossRefGoogle Scholar
  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC et al. (2009) Gaussian 09 Revision B.01. Wallingford, CTGoogle Scholar
  23. Fubini B, Zanetti G, Altilia S, Tiozzo R, Lison D, Saffiotti U (1999) Relationship between surface properties and cellular responses to crystalline silica: studies with heat-treated cristobalite. Chem Res Toxicol 12:737–745CrossRefGoogle Scholar
  24. Gazit OM, Katz A (2013) Understanding the role of defect sites in glucan hydrolysis on surfaces. J Am Chem Soc 135:4398–4402CrossRefGoogle Scholar
  25. Gonzalez-Outeiriño J, Kirschner KN, Thobhani S, Woods RJ (2006) Reconciling solvent effects on rotamer populations in carbohydrates—A joint MD and NMR analysis. Can J Chem 84:569–579CrossRefGoogle Scholar
  26. Gottlieb HE, Kotlyar V, Nudelman A (1997) NMR chemical shifts of common laboratory solvents as trace impurities. J Org Chem 62:7512–7515CrossRefGoogle Scholar
  27. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799CrossRefGoogle Scholar
  28. Guvench O, Hatcher ER, Venable RM, Pastor RW, MacKerell AD Jr (2009) CHARMM additive all-atom force field for glycosidic linkages. J Chem Theory Comput 5:2353–2370CrossRefGoogle Scholar
  29. Hanus J, Mazeau K (2006) The xyloglucan—cellulose assembly at the atomic scale. Biopolymers 82:59–73CrossRefGoogle Scholar
  30. Harris DM, Corbin K, Wang T, Gutierrez R, Bertolo AL, Carloalberto P, Smilgies D-M, Estevez JM, Bonetta D, Urbanowicz BR et al (2012) Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1A903V and CESA3T942I of cellulose synthase. Proc Natl Acad Sci USA 109:4098–4103CrossRefGoogle Scholar
  31. Heiner AP, Teleman O (1997) Interface between monoclinic crystalline cellulose and water: breakdown of the odd/even duplicity. Langmuir 13:511–518 Google Scholar
  32. Heiner AP, Kuutti L, Teleman O (1998) Comparison of the interface between water and four surfaces of native crystalline cellulose by molecular dynamics simulations. Carbohydr Res 306:205–220CrossRefGoogle Scholar
  33. Hiejima Y, Yao M (2004) Phase behaviour of water confined in Vycor glass at high temperatures and pressures. J Phys: Condens Matter 16:7903–7908Google Scholar
  34. Horii F, Hirai A, Kitamaru R (1983) Solid-state 13C-NMR study of conformations of the oligosaccharide and cellulose conformation of the CH2OH group about the exo-cyclic C–C bond. Polym Bull 10:357–361CrossRefGoogle Scholar
  35. Horii F, Hirai A, Kitamaru R (1984) CP-MAS C-13 NMR study of spin relaxation phenomena of cellulose containing crystalline and noncrystalline components. J Carbohydr Chem 3:641–662CrossRefGoogle Scholar
  36. Horikawa Y, Itoh T, Sugiyama J (2006) Preferential uniplanar orientation of cellulose microfibrils reinvestigated by the FTIR technique. Cellulose 13:309–316CrossRefGoogle Scholar
  37. Iijima M, Morita S, Barlow PW (2008) Structure and function of the root cap. Plant Prod Sci 11:17–27CrossRefGoogle Scholar
  38. Ireta J, Neugebauer J, Scheffler M (2004) On the accuracy of DFT for describing hydrogen bonds: dependence on the bond directionality. J Phys Chem A 108:5692–5698CrossRefGoogle Scholar
  39. Jarvis MC (1994) Relationship of chemical shift to glycosidic conformation in the solid-state 13C NMR spectra of (1 → 4)-linked glucose polymers and oligomers: anomeric and related effects. Carbohydr Res 259:311–318CrossRefGoogle Scholar
  40. Jarvis MC (2011) Plant cell walls: supramolecular assemblies. Food Hydrocolloids 25:257–262CrossRefGoogle Scholar
  41. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New YorkGoogle Scholar
  42. Kalutskaya EP, Gusev SS (1981) An infrared spectroscopic investigation of the hydration of cellulose. Polym Sci USSR 22(3):550–556CrossRefGoogle Scholar
  43. Karadakov PB (2006) Ab Initio Calculation of NMR Shielding Constants. In: Webb GA (ed) Modern magnetic resonance. Springer, Netherlands, pp 63–70CrossRefGoogle Scholar
  44. Kirschner KN, Woods RJ (2001) Solvent interactions determine carbohydrate conformation. Proc Natl Acad Sci USA 98:10541–10545CrossRefGoogle Scholar
  45. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  46. Kresse G, Hafner J (1993) Ab initio molecular dynamics for open-shell transition metals. Phys Rev B 48:13115–13118CrossRefGoogle Scholar
  47. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269CrossRefGoogle Scholar
  48. Kresse G, Furthmüller J, Hafner J (1994) Theory of the crystal structures of selenium and tellurium: the effect of generalized-gradient corrections to the local-density approximation. Phys Rev B 50:13181–13185CrossRefGoogle Scholar
  49. Krishnan R, Brinkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654CrossRefGoogle Scholar
  50. Kubicki JD, Mohamed MN-A, Watts HD (2013) Quantum mechanical modeling of the structures, energetics and spectral properties of Iα and Iβ cellulose. Cellulose 20:9–23CrossRefGoogle Scholar
  51. Lee CM, Mohamed MA, Watts HD, Kubicki JD, Kim S (2013) Sum-frequency-generation (SFG) vibration spectra and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα; and Iβ. J Phys Chem B 117:6681–6692CrossRefGoogle Scholar
  52. Lehtiö J, Sugiyama J, Gustavsson M, Fransson L, Linder M, Teeri TT (2003) The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci USA 100:484–489CrossRefGoogle Scholar
  53. Li Y, Lin M, Davenport JW (2011) Ab initio studies of cellulose I: crystal structure, intermolecular forces, and interactions with water. J Phys Chem 115:11533–11539Google Scholar
  54. Lindberg B, Mosihuzzaman M, Nahar N, Abeysekera RM, Brown RG, Willison JHM (1990) An unusual (4-O-methyl-D-glucurono)-D-xylan isolated from the mucilage of seeds of the quince tree (Cydonia oblonga). Carbohydr Res 207:307–310CrossRefGoogle Scholar
  55. Liu Y, Gamble G, Thibodeaux D (2010) Two-dimensional attenuated total reflection infrared correlation spectroscopy study of the desorption process of water-soaked cotton fibers. Appl Spectrosc 64:1355–1363CrossRefGoogle Scholar
  56. Lodewyk MW, Siebert MR, Tantillo DJ (2012) Computational prediction of 1H and 13C chemical shifts: a useful tool for natural product, mechanistic, and synthetic organic chemistry. Chem Rev 112:1839–1862CrossRefGoogle Scholar
  57. Malm E, Bulone V, Wickholm K, Larsson P, Iversen T (2010) The surface structure of well-ordered native cellulose fibrils in contact with water. Carbohydr Res 345:97–100CrossRefGoogle Scholar
  58. Mann J, Marrinan HJ (1956) The reaction between cellulose and heavy water. Trans Faraday Soc 52:481–487CrossRefGoogle Scholar
  59. Maréchal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struct 523:183–196CrossRefGoogle Scholar
  60. Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr Res 341:138–152CrossRefGoogle Scholar
  61. Matthews JF, Bergenstråhle M, Beckham GT, Himmel ME, Nimlos MR, Brady JW, Crowley MF (2011) High-temperature behavior of cellulose I. J Phys Chem B 115:2155–2166CrossRefGoogle Scholar
  62. Matthews JF, Beckham GT, Bergenstråhle-Wohlert M, Brady JW, Himmel ME, Crowley MF (2012) Comparison of cellulose Iβ simulations with three carbohydrate force fields. J Chem Theory Comput 8:735–748CrossRefGoogle Scholar
  63. Nakashima K, Sugiyama J, Satoh N (2008) A spectroscopic assessment of cellulose and the molecular mechanisms of cellulose biosynthesis in the ascidian Ciona intestinalis. Mar Genom 1:9–14CrossRefGoogle Scholar
  64. Naran R, Chen G, Carpita NC (2008) Novel rhamnogalacturonan I and arabinoxylan polysaccharides of flax seed mucilage. Plant Physiol 148:132–141CrossRefGoogle Scholar
  65. Newman RH, Davidson TC (2004) Molecular conformations at the cellulose—water interface. Cellulose 11:23–32CrossRefGoogle Scholar
  66. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRefGoogle Scholar
  67. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306CrossRefGoogle Scholar
  68. Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Iβ. Biomacromolecules 9:3133–3140CrossRefGoogle Scholar
  69. O’Dell WB, Baker DC, McLain SE (2012) Structural evidence for inter-residue hydrogen bonding observed for cellobiose in aqueous solution. PLoS ONE 7:e45311CrossRefGoogle Scholar
  70. Paterson MS (1982) The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar minerals. Bull Minér 105:20–29Google Scholar
  71. Petridis L, Pingali S, Urban V, Heller W, O’Neill H, Foston M, Ragauskas A, Smith J (2011) Self-similar multiscale structure of lignin revealed by neutron scattering and molecular dynamics simulation. Phys Rev E 83:4–7CrossRefGoogle Scholar
  72. Radloff D, Boeffel C, Spiess HW (1996) Cellulose and cellulose/poly (vinyl alcohol) blends. 2. Water organization revealed by solid-state NMR spectroscopy. Macromolecules 29(5):1528–1534CrossRefGoogle Scholar
  73. Rappé AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035CrossRefGoogle Scholar
  74. Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) 6-31G* basis set for third-row atoms. J Comput Chem 22:976–984CrossRefGoogle Scholar
  75. Sarotti AM, Pellegrinet SC (2009) A multi-standard approach for GIAO 13C NMR calculations. J Organ Chem 74:7254–7260CrossRefGoogle Scholar
  76. Schaftenaar G, Noordik JH (2000) Molden: a pre- and post-processing program for molecular and electronic structures. J Comput Aided Mol Des 14:123–134CrossRefGoogle Scholar
  77. Schreckenbach G, Ziegler T (1995) Calculation of NMR shielding tensors using gauge-including atomic orbitals and modern density functional theory. J Phys Chem 99:606–611CrossRefGoogle Scholar
  78. Skinner JL, Pieniazek PA, Gruenbaum SM (2012) Vibrational spectroscopy of water at interfaces. Acc Chem Res 45:93–100CrossRefGoogle Scholar
  79. Sternberg U, Koch F, Prieß W, Witter R (2003) Crystal structure refinements of cellulose polymorphs using solid state 13C chemical shifts. Cellulose 10:189–199CrossRefGoogle Scholar
  80. Šturcová S, His I, Apperley DC, Sugiyama J, Jarvis MC (2004) Structural details of crystalline cellulose from higher plants. Biomacromolecules 5:1333–1339CrossRefGoogle Scholar
  81. Thomas LH, Forsyth VT, Sturcová A, Kennedy CJ, May RP, Altaner CM, Apperley DC, Wess TJ, Jarvis MC (2013) Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiol 161:465–476CrossRefGoogle Scholar
  82. Watts HD, Mohamed MNA, Kubicki JD (2011) Comparison of multistandard and TMS-standard calculated NMR shifts for coniferyl alcohol and application of the multistandard method to lignin dimers. J Phys Chem B 115:1958–1970CrossRefGoogle Scholar
  83. Wickholm K, Larsson PT, Iversen T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. Carbohydr Res 312:123–129CrossRefGoogle Scholar
  84. Wiitala KW, Hoye TR, Cramer CJ (2006) Hybrid density functional methods empirically optimized for the computation of 13C and 1H chemical shifts in chloroform solution. J Chem Theory Comput 2(4):1085–1092 Google Scholar
  85. Wiley JH, Atalla RH (1987) Band assignments in the Raman spectra of celluloses. Carbohydr Res 160:113–129CrossRefGoogle Scholar
  86. Witter R, Sternberg U, Hesse S, Kondo T, Koch F-T, Ulrich AS (2006) 13C chemical shift constrained crystal structure refinement of cellulose Iα and its verification by NMR anisotropy experiments. Macromolecules 38:6125–6132CrossRefGoogle Scholar
  87. Wolinski K, Hinton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260CrossRefGoogle Scholar
  88. Zhang C, Lindan PJD (2003) Towards a first-principles picture of the oxide–water interface. J Chem Phys 119:9183–9190CrossRefGoogle Scholar
  89. Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2:364–382CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • James D. Kubicki
    • 1
  • Heath D. Watts
    • 1
  • Zhen Zhao
    • 1
  • Linghao Zhong
    • 2
  1. 1.Department of GeosciencesThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of ChemistryThe Pennsylvania State UniversityMont AltoUSA

Personalised recommendations