, Volume 21, Issue 2, pp 983–997 | Cite as

Simulation of a cellulose fiber in ionic liquid suggests a synergistic approach to dissolution

  • Barmak Mostofian
  • Jeremy C. Smith
  • Xiaolin Cheng
Original Paper


Ionic liquids dissolve cellulose in a more efficient and environmentally acceptable way than conventional methods in aqueous solution. An understanding of how ionic liquids act on cellulose is essential for improving pretreatment conditions and thus detailed knowledge of the interactions between the cations, anions and cellulose is necessary. Here, to explore ionic liquid effects, we perform all-atom molecular dynamics simulations of a cellulose microfibril in 1-butyl-3-methylimidazolium chloride and analyze site–site interactions and cation orientations at the solute–solvent interface. The results indicate that Cl anions predominantly interact with cellulose surface hydroxyl groups but with differences between chains of neighboring cellulose layers, referred to as center and origin chains; Cl binds to C3-hydroxyls on the origin chains but to C2- and C6-hydroxyls on the center chains, thus resulting in a distinct pattern along glucan chains of the hydrophilic fiber surfaces. In particular, Cl binding disrupts intrachain O3H–O5 hydrogen bonds on the origin chains but not those on the center chains. In contrast, Bmim+ cations stack preferentially on the hydrophobic cellulose surface, governed by non-polar interactions with cellulose. Complementary to the polar interactions between Cl and cellulose, the stacking interaction between solvent cation rings and cellulose pyranose rings can compensate the interaction between stacked cellulose layers, thus stabilizing detached cellulose chains. Moreover, a frequently occurring intercalation of Bmim+ on the hydrophilic surface is observed, which by separating cellulose layers can also potentially facilitate the initiation of fiber disintegration. The results provide a molecular description why ionic liquids are ideal cellulose solvents, the concerted action of anions and cations on the hydrophobic and hydrophilic surfaces being key to the efficient dissolution of the amphiphilic carbohydrate.


Cellulose Ionic liquids Pretreatment MD simulation 



This research was funded from the BioEnergy Science Center, a DOE Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. It was also supported in part by the National Science Foundation through XSEDE resources provided by the National Institute of Computational Sciences under grant number TG-MCA08X032.

Supplementary material

10570_2013_18_MOESM1_ESM.pdf (2.4 mb)
Supplementary material 1 (PDF 2472 kb)


  1. Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861CrossRefGoogle Scholar
  2. Bellesia G, Chundawat S, Langan P, Dale B, Gnanakaran S (2011) Probing the early events associated with liquid ammonia pretreatment of native crystalline cellulose. J Phys Chem B 115:9782–9788CrossRefGoogle Scholar
  3. BeMiller JN, Whistler L (1996) Carbohydrates. In: Fennema OR (ed) Food chemistry, 3rd edn. CRC, New York, pp 157–224Google Scholar
  4. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690CrossRefGoogle Scholar
  5. Bergenstrahle M, Berglund L, Mazeau K (2007) Thermal response in crystalline Ibeta cellulose: a molecular dynamics study. J Phys Chem B 111:9138–9145CrossRefGoogle Scholar
  6. Bergenstrahle M, Wohlert J, Himmel M, Brady J (2010) Simulation studies of the insolubility of cellulose. Carbohydr Res 345:2060–2066CrossRefGoogle Scholar
  7. Bhargava BL, Balasubramanian S (2007) Refined potential model for atomistic simulations of ionic liquid [bmim][PF6]. J Chem Phys 127:114510CrossRefGoogle Scholar
  8. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101CrossRefGoogle Scholar
  9. Chen Y, Stipanovic A, Winter W, Wilson D, Kim Y-J (2007) Effect of digestion by pure cellulases on crystallinity and average chain length for bacterial and microcrystalline celluloses. Cellulose 14:283–293CrossRefGoogle Scholar
  10. Cheng G, Varanasi P, Li C, Liu H, Melnichenko Y, Simmons B, Kent M, Singh S (2011) Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules 12:933–941CrossRefGoogle Scholar
  11. Cho H, Gross A, Chu J-W (2011) Dissecting force interactions in cellulose deconstruction reveals the required solvent versatility for overcoming biomass recalcitrance. J Am Chem Soc 133:14033–14041CrossRefGoogle Scholar
  12. Chundawat S, Bellesia G, Uppugundla N, da Costa Sousa L, Gao D, Cheh A, Agarwal U, Bianchetti C, Phillips G, Langan P et al (2011) Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc 133:11163–11174CrossRefGoogle Scholar
  13. Dadi A, Varanasi S, Schall C (2006) Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng 95:904–910CrossRefGoogle Scholar
  14. Dadi A, Schall C, Varanasi S (2007) Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl Biochem Biotechnol 137–140:407–421CrossRefGoogle Scholar
  15. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N*log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092CrossRefGoogle Scholar
  16. El Seoud O, Koschella A, Fidale L, Dorn S, Heinze T (2007) Applications of ionic liquids in carbohydrate chemistry: a window of opportunities. Biomacromolecules 8:2629–2647CrossRefGoogle Scholar
  17. Essmann U, Perera L, Berkowitz M, Darden T, Lee H, Pedersen L (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593CrossRefGoogle Scholar
  18. Fukaya Y, Hayashi K, Kim SS, Ohna H (2010) Design of polar ionic liquids to solubilize cellulose without heating. In: Liebert T, Heinze T, Edgar K (eds) Cellulose solvents: for analysis, shaping and chemical modification, vol 1033. ACS, Washington, pp 55–66Google Scholar
  19. GAUSSIAN version 09 (2009) Wallingford, CT, Gaussian, Inc.Google Scholar
  20. Gericke M, Fardim P, Heinze T (2012) Ionic liquids–promising but challenging solvents for homogeneous derivatization of cellulose. Molecules 17:7458–7502CrossRefGoogle Scholar
  21. Glasser WG, Atalla RH, Blackwell J, Brown RM Jr, Burchard W, French AD, Klemm DO, Nishiyama Y (2012) About the structure of cellulose: debating the Lindman Hypothesis. Cellulose 19:589–598CrossRefGoogle Scholar
  22. Gray-Weale A (2009) Correlations in the structure and dynamics of ionic liquids. Aust J Chem 62:288–297CrossRefGoogle Scholar
  23. Gross A, Chu J-W (2010) On the molecular origins of biomass recalcitrance: the interaction network and solvation structures of cellulose microfibrils. J Phys Chem B 114:13333–13341CrossRefGoogle Scholar
  24. Gross A, Bell A, Chu J-W (2012) Entropy of cellulose dissolution in water and in the ionic liquid 1-butyl-3-methylimidazolim chloride. Phys Chem Chem Phys 14:8425–8430CrossRefGoogle Scholar
  25. Heinze T, Dorn S, Schöbitz M, Liebert T, Köhler S, Meister F (2008) Interactions of ionic liquids with polysaccharides-2: cellulose. Macromol Symp 262:8–22CrossRefGoogle Scholar
  26. Hess B, Bekker H, Berendsen H, Fraaije J (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472CrossRefGoogle Scholar
  27. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447CrossRefGoogle Scholar
  28. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38Google Scholar
  29. Jorgensen W, Chandrasekhar J, Madura J, Impey R, Klein M (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRefGoogle Scholar
  30. Kim S-J, Dwiatmoko A, Choi J, Suh Y-W, Suh D, Oh M (2010) Cellulose pretreatment with 1-n-butyl-3-methylimidazolium chloride for solid acid-catalyzed hydrolysis. Bioresour Technol 101:8273–8279CrossRefGoogle Scholar
  31. Kirschner K, Yongye A, Tschampel S, Gonzalez-Outeirino J, Daniels C, Foley L, Woods R (2008) GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J Comput Chem 29:622–655CrossRefGoogle Scholar
  32. Klein H, Cheng X, Smith J, Shen T (2011) Transfer matrix approach to the hydrogen-bonding in cellulose Iα fibrils describes the recalcitrance to thermal deconstruction. J Chem Phys 135:085106CrossRefGoogle Scholar
  33. Kowsari MH, Alavi S, Ashrafizaadeh M, Najafi B (2008) Molecular dynamics simulation of imidazolium-based ionic liquids. I. Dynamics and diffusion coefficient. J Chem Phys 129:224508CrossRefGoogle Scholar
  34. Langan P, Nishiyama Y, Chanzy H (1999) A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. J Am Chem Soc 121:9940–9946CrossRefGoogle Scholar
  35. Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2:410–416CrossRefGoogle Scholar
  36. Langan P, Gnanakaran S, Rector K, Pawley N, Fox D, Cho D, Hammel K (2011) Exploring new strategies for cellulosic biofuels production. Energy Environ Sci 4:3820–3833CrossRefGoogle Scholar
  37. Li C, Knierim B, Manisseri C, Arora R, Scheller H, Auer M, Vogel K, Simmons B, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101:4900–4906CrossRefGoogle Scholar
  38. Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81CrossRefGoogle Scholar
  39. Liu L, Chen H (2006) Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM] Cl. Chin Sci Bull 51:2432–2436CrossRefGoogle Scholar
  40. Liu Z, Huang S, Wang W (2004) A refined force field for molecular simulation of imidazolium-based ionic liquids. J Phys Chem B 108:12978–12989CrossRefGoogle Scholar
  41. Liu C, Sun R, Zhang A, Li W (2010a) Dissolution of cellulose in ionic liquids and its application for cellulose processing and modification. In: Liebert T, Heinze T, Edgar K (eds) Cellulose solvents: for analysis, shaping and chemical modification, vol 1033. ACS, New York, pp 287–297Google Scholar
  42. Liu H, Sale K, Holmes B, Simmons B, Singh S (2010b) Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study. J Phys Chem B 114:4293–4301CrossRefGoogle Scholar
  43. Liu H, Sale K, Simmons B, Singh S (2011) Molecular dynamics study of polysaccharides in binary solvent mixtures of an ionic liquid and water. J Phys Chem B 115:10251–10258CrossRefGoogle Scholar
  44. Lucas M, Wagner G, Nishiyama Y, Hanson L, Samayam I, Schall C, Langan P, Rector K (2011) Reversible swelling of the cell wall of poplar biomass by ionic liquid at room temperature. Bioresour Technol 102:4518–4523CrossRefGoogle Scholar
  45. Margulis CJ, Stern HA, Berne BJ (2002) Computer simulation of a “Green Chemistry” Room-temperature ionic solvent. J Phys Chem B 106:12017–12021CrossRefGoogle Scholar
  46. MATLAB version 7.12.0 (2011) Natick, Massachusetts: The MathWorks Inc.Google Scholar
  47. Matthews J, Skopec C, Mason P, Zuccato P, Torget R, Sugiyama J, Himmel M, Brady J (2006) Computer simulation studies of microcrystalline cellulose Iß. Carbohydr Res 341:138–152CrossRefGoogle Scholar
  48. Matthews J, Himmel M, Brady J (2010) Simulations of the structure of cellulose. In: Nimlos MR, Crowley MF (eds) Computational modeling in lignocellulosic biofuel production, vol 1052. ACS Symposium Series, pp 17–53Google Scholar
  49. Matthews J, Bergenstrahle M, Beckham G, Himmel M, Nimlos M, Brady J, Crowley M (2011) High-temperature behavior of cellulose I. J Phys Chem B 115:2155–2166CrossRefGoogle Scholar
  50. Medronho B, Romano A, Miguel M, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587CrossRefGoogle Scholar
  51. Mostofian B, Smith JC, Cheng X (2011) The solvation structures of cellulose microfibrils in ionic liquids. Interdiscip Sci Comput Life Sci 3:308–320CrossRefGoogle Scholar
  52. Moulthrop J, Swatloski R, Moyna G, Rogers R (2005) High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions. Chem Commun 12:1557–1559Google Scholar
  53. Muldoon M, Gordon C, Dunkin I (2001) Investigations of solvent-solute interactions in room temperature ionic liquids using solvatochromic dyes. J Chem Soc Perkin Trans 2:433–435CrossRefGoogle Scholar
  54. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iß from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRefGoogle Scholar
  55. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306CrossRefGoogle Scholar
  56. Ohira K, Abe Y, Kawatsura M, Suzuki K, Mizuno M, Amano Y, Itoh T (2012) Design of cellulose dissolving ionic liquids inspired by nature. ChemSusChem 5:388–391CrossRefGoogle Scholar
  57. Raju SG, Balasubramanian S (2010) Role of cation symmetry in intermolecular structure and dynamics of room temperature ionic liquids: simulation studies. J Phys Chem B 114:6455–6463CrossRefGoogle Scholar
  58. Ramadugu S, Chung Y-H, Xia J, Margulis C (2009) When sugars get wet. A comprehensive study of the behavior of water on the surface of oligosaccharides. J Phys Chem B 113:11003–11015CrossRefGoogle Scholar
  59. Reichardt C (2005) Polarity of ionic liquids determined empirically by means of solvatochromic pyridinium N-phenolate betaine dyes. Green Chem 7:339–351CrossRefGoogle Scholar
  60. Rinaldi R, Palkovits R, Schüth F (2008) Depolymerization of cellulose using solid catalysts in ionic liquids. Angew Chem Int Ed 47:8047–8050CrossRefGoogle Scholar
  61. Samayam I, Hanson L, Langan P, Schall C (2011) Ionic-liquid induced changes in cellulose structure associated with enhanced biomass hydrolysis. Biomacromolecules 12:3091–3098CrossRefGoogle Scholar
  62. Sellin M, Ondruschka B, Stark A (2010) Hydrogen bond acceptor properties of ionic liquids and their effect on cellulose solubility. In: Liebert T, Heinze T, Edgar K (eds) Cellulose solvents: for analysis, shaping and chemical modification, vol 1033. ACS, New York, pp 121–135Google Scholar
  63. Shen T, Gnanakaran S (2009) The stability of cellulose: a statistical perspective from a coarse-grained model of hydrogen-bond networks. Biophys J 96:3032–3040CrossRefGoogle Scholar
  64. Sun N, Rodriguez H, Rahman M, Rogers R (2011) Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass? Chem Commun 47:1405–1421CrossRefGoogle Scholar
  65. Swatloski R, Spear S, Holbrey J, Rogers R (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975CrossRefGoogle Scholar
  66. Urahata S, Ribeiro M (2005) Single particle dynamics in ionic liquids of 1-alkyl-3-methylimidazolium cations. J Chem Phys 122:024511CrossRefGoogle Scholar
  67. Wada M, Nishiyama Y, Bellesia G, Forsyth T, Gnanakaran S, Langan P (2011) Neutron crystallographic and molecular dynamics studies of the structure of ammonia-cellulose I: rearrangement of hydrogen bonding during the treatment of cellulose with ammonia. Cellulose 18:191–206CrossRefGoogle Scholar
  68. Wang H, Gurau G, Rogers R (2012) Ionic liquid processing of cellulose. Chem Soc Rev 41:1519–1537CrossRefGoogle Scholar
  69. Youngs TGA, Hardacre C, Holbrey JD (2007) Glucose solvation by the ionic liquid 1,3-dimethylimidazolium chloride: a simulation study. J Phys Chem B 111:13765–13774CrossRefGoogle Scholar
  70. Yui T, Nishimura S, Akiba S, Hayashi S (2006) Swelling behavior of the cellulose Iβ crystal models by molecular dynamics. Carbohydr Res 341:2521–2530CrossRefGoogle Scholar
  71. Zavrel M, Bross D, Funke M, Buechs J, Spiess A (2009) High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour Technol 100:2580–2587CrossRefGoogle Scholar
  72. Zhang Y, Chan J (2010) Sustainable chemistry: imidazolium salts in biomass conversion and CO2 fixation. Energy Environ Sci 3:408–417CrossRefGoogle Scholar
  73. Zhang L, Ruan D, Gao S (2002) Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. J Polym Sci B Polym Phys 40:1521–1529CrossRefGoogle Scholar
  74. Zhao Y, Liu X, Wang J, Zhang S (2012) Effects of cationic structure on cellulose dissolution in ionic liquids: a molecular dynamics study. ChemPhysChem 13:3126–3133CrossRefGoogle Scholar
  75. Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–327CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA)  2013

Authors and Affiliations

  • Barmak Mostofian
    • 1
    • 2
  • Jeremy C. Smith
    • 1
    • 3
  • Xiaolin Cheng
    • 1
    • 3
  1. 1.Oak Ridge National LaboratoryUT/ORNL Center for Molecular BiophysicsOak RidgeUSA
  2. 2.Graduate School of Genome Science and TechnologyThe University of TennesseeKnoxvilleUSA
  3. 3.Department of Biochemistry, Cellular and Molecular BiologyThe University of TennesseeKnoxvilleUSA

Personalised recommendations