, Volume 20, Issue 1, pp 9–23 | Cite as

Quantum mechanical modeling of the structures, energetics and spectral properties of Iα and Iβ cellulose

  • James D. Kubicki
  • Mohamed Naseer-Ali Mohamed
  • Heath D. Watts
Original Paper


Periodic planewave and molecular cluster density functional theory (DFT) calculations were performed on Iα and Iβ cellulose in four different conformations each. The results are consistent with the previous interpretation of experimental X-ray and neutron diffraction data that both Iα and Iβ cellulose are dominantly found in the tg conformation of the hydroxymethyl group with a H-bonding conformation termed “Network A”. Structural and energetic results of the periodic DFT calculations with dispersion corrections (DFT-D2) are consistent with observation suggesting that this methodology is accurate to within a few percent for modeling cellulose. The structural and energetic results were confirmed by comparison of calculated vibrational frequencies against observed infrared and Raman frequencies of Iα and Iβ cellulose. Structures extracted from the periodic DFT-D2 energy minimizations were used to calculate the 13C nuclear magnetic resonance chemical shifts (δ13C), and the tg/Network A conformations of both Iα and Iβ cellulose produced excellent correlations with observed δ13C values.


Cellulose Infrared Raman NMR DFT 



This work was supported by the U.S. Department of Energy grant for the Energy Frontier Research Center in Lignocellulose Structure and Formation (CLSF) from the Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001090. The authors also thank Ilana Bar Ben Gurion University of the Negev for providing IR and Raman frequencies of crystalline cellobiose and Yoshiharu Nishiyama for suggesting DFT-D2 calculations as a methodology for modeling cellulose. Computational support was provided by the Research Computation and Cyberinfrastructure group at The Pennsylvania State University.


  1. Agarwal UP, Reiner RS, Ralph SA (2010) Cellulose I crystallinity determination using FT-Raman spectroscopy: univariate and multivariate methods. Cellulose 17(4):721-733CrossRefGoogle Scholar
  2. Atalla R (1999) Carbohydrates and their derivatives including tannins, cellulose and related lignins. In: Barton D, Nakanishi K (eds) Comprehensive natural products chemistry, 3rd edn. Elsevier, Amsterdam, pp 529-598CrossRefGoogle Scholar
  3. Atalla R, VanderHart D (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283-285CrossRefGoogle Scholar
  4. Blackwell J (1977) Infrared and Raman spectroscopy of cellulose. In: Aurthur J (ed) Cellulose chemistry and technology, ACS symposium series. American Chemical Society, Washington, DC, pp 206-218CrossRefGoogle Scholar
  5. Bućko T, Tunega D, Ángyán JG, Hafner J (2011) Ab initio study of structure and interconversion of native cellulose phases. J Phys Chem A 115:10097-10105CrossRefGoogle Scholar
  6. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10(44):6615-6620CrossRefGoogle Scholar
  7. Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996) A comparison of models for calculating nuclear magnetic resonance shielding tensors. J Chem Phys 104(14):5497-5509CrossRefGoogle Scholar
  8. Cirtog M, Alikhani ME, Madebène B, Soulard P, Asselin P, Tremblay B (2011) Bonding nature and vibrational signatures of oxirane: (water) n = 1-3. Assessment of the performance of the dispersion-corrected DFT methods compared to the ab initio results and Fourier transform infrared experimental data. J Phys Chem A 115(24):6688-6701CrossRefGoogle Scholar
  9. Earl WL, VanderHart DL (1981) Observations by high-resolution carbon-13 nuclear magnetic resonance of cellulose i related to morphology and crystal structure. Macromolecules 14:570-574CrossRefGoogle Scholar
  10. Earl WL, VanderHart DL (1984) Studies of microstructure in native celluloses using solid-state carbon-13 NMR. Macromolecules 17(8):1465-1472CrossRefGoogle Scholar
  11. Eck B (2012) wxDragon. Retrieved from
  12. Erata T, Shikano T, Yunoki S, Takai M (1997) The complete assignment of the 13C CP/MAS NMR spectrum of native cellulose by using 13C labeled glucose. Cellul Commun 4:128-131Google Scholar
  13. Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperely DC, Kennedy CJ et al (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci USA 108(47):E1195-E1203CrossRefGoogle Scholar
  14. Fiadzomor PAY, Keen AM, Grant RB, Orr-Ewing AJ (2008) Interaction energy of water dimers from pressure broadening of near-IR absorption lines. Chem Phys Lett 462(4-6):188-191CrossRefGoogle Scholar
  15. French AD, Johnson GP (2009) Cellulose and the twofold screw axis: modeling and experimental arguments. Cellulose 16(6):959-973CrossRefGoogle Scholar
  16. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr et al (2009) Gaussian 09 Revision B.01. Gaussian, Inc, Wallingford, CTGoogle Scholar
  17. Gonzalez-Outeiriño J, Kirschner KN, Thobhani S, Woods RJ (2006) Reconciling solvent effects on rotamer populations in carbohydrates-a joint MD and NMR analysis. Can J Chem 84(4):569-579CrossRefGoogle Scholar
  18. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787-1799CrossRefGoogle Scholar
  19. Han H, Camacho C, Witek HA, Lee Y (2011) Infrared absorption of methanol clusters (CH3OH)n with n = 2 − 6 recorded with a time-of-flight mass spectrometer using infrared depletion and vacuum-ultraviolet ionization. J Chem Phys 134(14):144309-144319CrossRefGoogle Scholar
  20. Hanus J, Mazeau K (2006) The xyloglucan-cellulose assembly at the atomic scale. Biopolymers 82:59-73CrossRefGoogle Scholar
  21. Harris DM, Corbin K, Wang T, Gutierrez R, Bertolo AL, Carloalberto P, Smilgies D-M et al (2012) Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1A903 V and CESA3T942I of cellulose synthase. Proc Natl Acad Sci USA 109(11):4098-4103CrossRefGoogle Scholar
  22. Heiner AP, Sugiyama J, Teleman O (1995) Crystalline cellulose Iα and Iβ studied by molecular-dynamics simulation. Carbohydr Res 273(2):207-223CrossRefGoogle Scholar
  23. Hesse-Ertelt S, Witter R, Ulrich AS, Kondo T, Heinze T (2008) Spectral assignments and anisotropy data of cellulose Iα: 13C-NMR chemical shift data of cellulose Iα determined by INADEQUATE and RAI techniques applied to uniformly 13C-labeled bacterial celluloses of different Gluconacetobacter xylinus strains. Magn Reson Chem 46:1030-1036CrossRefGoogle Scholar
  24. Himmel ME, Ruth MF, Wyman CE (1999) Cellulase for commodity products from cellulosic biomass. Curr Opin Biotechnol 10:358-364CrossRefGoogle Scholar
  25. Himmel ME, Di S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels. Science 315:804-807CrossRefGoogle Scholar
  26. Huisken F, Kaloudis M, Kulcke A (1996) Infrared spectroscopy of small size-selected water clusters. J Chem Phys 104(17):17-25CrossRefGoogle Scholar
  27. Kim H, Choi J, Goddard WA (2012) Universal correction of density functional theory to include London dispersion (up to Lr, element 103). J Phys Chem Lett 3(3):360-363CrossRefGoogle Scholar
  28. Koch F-T, Priess W, Witter R, Sternberg U (2000) Calculation of solid-state 13C NMR spectra of cellulose Iα, Iβ and II using a semi-empirical approach and molecular dynamics. Macromol Chem Phys 201(15):1930-1939CrossRefGoogle Scholar
  29. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169-11186CrossRefGoogle Scholar
  30. Kresse G, Hafner J (1993) Ab initio molecular dynamics for open-shell transition metals. Phys Rev B 48(17):13115-13118CrossRefGoogle Scholar
  31. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B 49(20):14251-14269CrossRefGoogle Scholar
  32. Kresse G, Furthmüller J, Hafner J (1994) Theory of the crystal structures of selenium and tellurium: the effect of generalized-gradient corrections to the local-density approximation. Phys Rev B 50(18):13181-13185CrossRefGoogle Scholar
  33. Lee CM, Park YB, Mohamed MNA, Kubicki JD, Roberts E, Cosgrove et al (2012) Structural understanding of cellulose from sum-frequency-generation (SFG) spectroscopy analyses. In: 243rd American chemical society national meeting and exposition. American Chemical Society, San DiegoGoogle Scholar
  34. Li Y, Lin M, Davenport JW (2011) Ab Initio studies of cellulose I: crystal structure, intermolecular forces, and interactions with water. J Phys Chem C 115(23):11533-11539CrossRefGoogle Scholar
  35. Lovas F, Belov S, Tretyakov M, Stahl W, Suenram RD (1995) The a-Type K = 0 microwave spectrum of the methanol dimer. J Mol Spectrosc 170:478-492. Retrieved from
  36. Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Fuel ethanol from cellulosic biomass. Science 251:1318-1323CrossRefGoogle Scholar
  37. Maréchal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struct 523(1-3):183-196CrossRefGoogle Scholar
  38. Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME et al (2006) Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr Res 341:138-152CrossRefGoogle Scholar
  39. Matthews JF, Beckham GT, Bergenstråhle-Wohlert M, Brady JW, Himmel ME, Crowley MF (2012) Comparison of cellulose Iβ simulations with three carbohydrate force fields. J Chem Theory Comput 8(2):735-748CrossRefGoogle Scholar
  40. Mazeau K, Charlier L (2012) The molecular basis of the adsorption of xylans on cellulose surface. Cellulose 19(2):337-349CrossRefGoogle Scholar
  41. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941-3994CrossRefGoogle Scholar
  42. Newman RH, Davidson TC (2004) Molecular conformations at the cellulose-water interface. Cellulose 11:23-32CrossRefGoogle Scholar
  43. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074-9082CrossRefGoogle Scholar
  44. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300-14306CrossRefGoogle Scholar
  45. Nishiyama Y, Johnson GP, French AD, Forsyth V, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Iβ. Biomacromolecules 9(11):3133-3140CrossRefGoogle Scholar
  46. O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4(3):173-207CrossRefGoogle Scholar
  47. Odutola JA, Dyke TR (1980) Partially deuterated water dimers: microwave spectra and structure. J Chem Phys 72(9):5062-5070CrossRefGoogle Scholar
  48. Payen A (1838) Memoir on the composition of the tissue of plants and of woody material. CR Biol 7:1052-1056Google Scholar
  49. Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) 6-31G* basis set for third-row atoms. J Comput Chem 22:976-984CrossRefGoogle Scholar
  50. Rocher-Casterline BE, Ch’ng LC, Mollner AK, Reisler H (2011) Communication: determination of the bond dissociation energy (D0) of teh water dimer, (H2O)2, by velocity map imaging. J Chem Phys 134(21):211101-211104CrossRefGoogle Scholar
  51. Sarotti AM, Pellegrinet SC (2009) A multi-standard approach for GIAO (13)C NMR calculations. J Org Chem 74(19):7254-7260CrossRefGoogle Scholar
  52. Sternberg U, Koch F-T, Priess W, Witter R (2003) Crystal structure refinements of cellulose polymorphs using solid-state 13C chemical shifts. Cellulose 10:189-199CrossRefGoogle Scholar
  53. Štrucova A, His I, Apperley DC, Sugiyama J, Jarvis MC (2004) Structural details of crystalline cellulose from higher plants. Biomacromolecules 5:1333-1339CrossRefGoogle Scholar
  54. Suzuki S, Horiia F, Kurosu H (2009) Theoretical investigations of 13C chemical shifts in glucose, cellobiose, and native cellulose by quantum chemistry calculations. J Mol Struct 921(1-3):219-226CrossRefGoogle Scholar
  55. Tavagnacco L, Masona PE, Schnupfa U, Piticia F, Zhong L, Himmel ME, Crowley M et al (2011) Sugar-binding sites on the surface of the carbohydrate-binding module of CBH I from Trichoderma reesei. Carbohydr Res 346(6):839-846CrossRefGoogle Scholar
  56. Tormo J, Lamed R, Chirino AJ, Morag E, Bayer EA, Shoham Y, Steitz TA (1996) Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. J Eur Mol Biol Organ (EMBO) 5:5739-5751Google Scholar
  57. Viëtor RJ, Newman RH, Ha M-A, Apperely DC, Jarvis MC (2002) Conformational features of crystal-surface cellulose from higher plants. Plant J 30:721-731CrossRefGoogle Scholar
  58. Watts HD, Mohamed MNA, Kubicki JD (2011) Comparison of multistandard and TMS-standard calculated NMR shifts for coniferyl alcohol and application of the multistandard method to lignin dimers. J Phys Chem B 115(9):1958-1970CrossRefGoogle Scholar
  59. Wiley JH, Atalla, RA (1987) Band assignments in the Raman spectra of celluloses. Carbohydr Res 160:113-129CrossRefGoogle Scholar
  60. Witter R, Sternberg U, Hesse S, Kondo T, Koch F-T, Ulrich AS (2006) 13C chemical shift constrained crystal structure refinement of cellulose Iα and its verification by NMR anisotropy experiments. Macromolecules 38(19):6125-6132CrossRefGoogle Scholar
  61. Wolinski K, Hinton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251-8260CrossRefGoogle Scholar
  62. Xie H, Pincu M, Brauer B, Gerber RB (2011) Raman and infrared spectra of cellobiose in the solid state: what can be learned from single-molecule calculations? Chem Phys Lett 514:284-290CrossRefGoogle Scholar
  63. Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. Design 2:364-382Google Scholar
  64. Zhong L, Matthews JF, Crowley MF, Rignall T, Talón C, Cleary JM, Walker RC et al (2008) Interactions of the complete cellobiohydrolase I from Trichodera reesei with microcrystalline cellulose Iβ. Cellulose 15(2):261-273CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  • James D. Kubicki
    • 1
  • Mohamed Naseer-Ali Mohamed
    • 2
  • Heath D. Watts
    • 1
  1. 1.Department of Geosciences and the Earth and Environmental Systems InstituteThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.School of Advanced SciencesVIT UniversityVelloreIndia

Personalised recommendations