, Volume 20, Issue 1, pp 315–325 | Cite as

Silver incorporation on viscose and cotton fibers after air, nitrogen and oxygen DBD plasma pretreatment

  • V. Prysiazhnyi
  • A. Kramar
  • B. Dojcinovic
  • A. Zekic
  • B. M. Obradovic
  • M. M. Kuraica
  • M. Kostic
Original Paper


Dielectric barrier discharge (DBD) pretreatments in air, nitrogen and oxygen plasma of viscose and cotton fabrics with subsequent immobilization of silver were studied. Surface activation of treated fibers was evaluated through subsequent sorption of silver from aqueous AgNO3 solution, after which changes in the surface morphology were monitored and quantity of silver deposition on fabric was measured. The plasma treatment was done in volume DBD discharge with the gap distance between electrodes of 0.5 and 2 mm. Depending on the gas used in pretreatment, significant difference in the way silver bonds to the textile surface was found. Nitrogen plasma pretreatment with gap distance of 0.5 mm led to the homogeneous fiber coating by silver nanoparticles with average size up to 300 nm estimated by SEM, while fibers treated in oxygen plasma adsorbed silver in a form of ions. The plasma pretreatment in air leads to changes that contain features of fibers treated in both nitrogen and oxygen DBD plasma. Distinct difference of used configuration of the plasma source is a use of gap distance 0.5 mm, which is in order of textile thickness. Observed results allow us to report a new way how to immobilize silver nanoparticles onto textile fibers using plasma pretreatment with subsequent sorption of silver from aqueous solution.

Graphical Abstract


Plasma pretreatment Textile functionalization Silver nanoparticles 



Authors are very grateful to S. Ivković and I. Krstić for the technical support. This work is supported by the Ministry of Education and Science of the Republic of Serbia through the Projects OI 171034 and OI 172029.


  1. Akashi H, Yoshinaga T, Oda A (2012) Effect of secondary electron emission on atmospheric pressure oxygen dielectric barrier discharges. In ESCAMPIG XXI, PortugalGoogle Scholar
  2. Chadeau E, Oulahal N, Dubost L, Favergeon F, Degraeve P (2010) Anti-Listeria innocua activity of silver functionalised textile prepared with plasma technology. Food Control 21:505–512CrossRefGoogle Scholar
  3. Chen C-Y, Chiang C-L (2008) Preparation of cotton fibers with antibacterial silver nanoparticles. Mater Lett 62:3607–3609CrossRefGoogle Scholar
  4. Deslandes Y, Pleizier G, Poire E, Sapieha S, Wertheimer MR, Sacher E (1998) The surface modification of pure cellulose paper induced by low-pressure nitrogen plasma treatment. Plasmas Polym 3(2):61–76CrossRefGoogle Scholar
  5. Dubas ST, Kumlangdudsana P, Potiyaraj P (2006) Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids Surf A Physicochem Eng Asp 289:105–109CrossRefGoogle Scholar
  6. Eichhorn S, Hearle JWS, Jaffe M, Kikutani T (2009) Handbook of textile fibre structure, volume 2: natural, regenerated, inorganic and specialist fibre, 1st edn. Woodhead Publishing, Cambridge (ISBN: 978-1439820728)Google Scholar
  7. El-Shishtawy RM, Asiri AM, Abdelwahed NAM, Al-Otaibi MM (2011) In situ production of silver nanoparticle on cotton fabric and its antimicrobial evaluation. Cellulose 18(1):75–82CrossRefGoogle Scholar
  8. Ferraria AM, Boufi S, Battaglini N, Botelho do Rego AM, ReiVilar M (2010) Hybrid systems of silver nanoparticles generated on cellulose surfaces. Langmuir 26(3):1996–2001CrossRefGoogle Scholar
  9. He J, Kunitake T, Nakao A (2003) Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem Mater 15(23):4401–4406CrossRefGoogle Scholar
  10. Ibrahim NA, Hashem MM, Eid MA, Refai R, El-Hossamy M, Eid BM (2010) Smart options for functional finishing of linen-containing fabrics. J Text I 101:1035–1049CrossRefGoogle Scholar
  11. Khalil-Abad MS, Yazdanshenas ME, Nateghi MR (2009) Effect of cationization on adsorption of silver nanoparticles on cotton surfaces and its antibacterial activity. Cellulose 16:1147–1157CrossRefGoogle Scholar
  12. Kostic M, Radic N, Obradovic BM, Dimitrijevic S, Kuraica MM, Skundric P (2009) Silver-loaded cotton/polyester fabric modified by dielectric barrier discharge treatment. Plasma Process Polym 6:58–67CrossRefGoogle Scholar
  13. Kotek R (2007) Regenerated cellulose fibers. Handbook of fiber chemistry, 3rd edn. Taylor & Francis Group, New York (ISBN: 978-0824725655)Google Scholar
  14. Lee HY, Park HK, Lee YM, Kim K, Park SB (2007) A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chem Commun (Camb) 28:2959–2961CrossRefGoogle Scholar
  15. Leroux F, Campagne C, Perwuelz A, Gengembre L (2009) Atmospheric air plasma treatment of polyester textile materials. Textile structure influence on surface oxidation and silicon resin adhesion. Surf Coat Technol 203:3178–3183CrossRefGoogle Scholar
  16. Lewin M (2007) Handbook of fiber chemistry, 3rd edn. Taylor & Francis Group, LLC, New York (ISBN: 978-0824725655)Google Scholar
  17. Lin L, Gong W, Wang X, Li X, Wang S (2011) Preparation and characterizations of antibacterial PET-based hollow fibers containing silver particles. Mater Lett 65:1375–1377CrossRefGoogle Scholar
  18. Morent R, De Geyter N, Verschuren J, De Clerck K, Kiekens P, Leys C (2008) Non-thermal plasma treatment of textiles. Surf Coat Technol 202:3427–3449CrossRefGoogle Scholar
  19. Onsuratoom S, Rujiravanit R, Sreethawong T, Tokura S, Chavadej S (2010) Silver loading on dbd plasma-modified woven pet surface for antimicrobial property improvement. Plasma Chem Plasma Process 30:191–206CrossRefGoogle Scholar
  20. Perelshtein I, Applerot G, Perkas N, Guibert G, Mikhailov S, Gedanken A (2008) Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 19:245705–245706CrossRefGoogle Scholar
  21. Radetic M, Ilic V, Vodnik V, Dimitrijevic S, Jovancic P, Saponjic Z, Nedeljkovic JM (2008) Antibacterial effect of silver nanoparticles deposited on corona-treated polyester and polyamide fabrics. Polym Adv Technol 19:1816–1821CrossRefGoogle Scholar
  22. Ravindra S, Murali Mohan Y, Narayana Reddy N, Mohana Raju K (2010) Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via “Green Approach”. Colloids Surf A Physicochem Eng Asp 367:31–40CrossRefGoogle Scholar
  23. Shi Q, Vitchuli N, Nowak J, Caldwell JM, Breidt F, Bourham M, Zhang X, McCord M (2011) Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers prepared by atmospheric plasma treatment and electrospinning. Eur Polym J 47:1402–1409CrossRefGoogle Scholar
  24. Shishoo Ed D (2007) Plasma technologies for textiles. Woodhead Publishing Limited, Cambridge (ISBN: 978-1845690731)Google Scholar
  25. Son WK, Youk JH, Lee TS, Park WH (2004) Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol Rapid Commun 25:1632–1637CrossRefGoogle Scholar
  26. Stana-Kleinschek K, Ribitsch V, Kreze T, Fras L (2002) Determination of the adsorption character of cellulose fibres using surface tension and surface charge. Mater Res Innov 6:13–18CrossRefGoogle Scholar
  27. Tarimala S, Kothari N, Abidi N, Hequet E, Fralick J, Dai LL (2006) New approach to antibacterial treatment of cotton fabric with silver nanoparticle–doped silica using sol–gel process. J Appl Polymer Sci 101:2938–2943CrossRefGoogle Scholar
  28. Tourrette A, De Geyter N, Jocic D, Morent R, Warmoeskerken MMCG, Leys C (2009) Incorporation of poly (N-isopropylacrylamide)/chitosan microgel onto plasma functionalized cotton fibre surface. Colloids Surf A Physicochem Eng Asp 352:126–135CrossRefGoogle Scholar
  29. Vander Wielen LC, Ostenson M, Gatenholm P, Ragauskas AJ (2006) Surface modification of cellulosic fibers using dielectric-barrier discharge. Carbohydr Polym 65:179–184CrossRefGoogle Scholar
  30. Wakelyn PJ et al (2007) Cotton fibers. Handbook of fiber chemistry, 3rd edn. Taylor & Francis Group, New York (ISBN: 978-1420045871)Google Scholar
  31. Wong KK, Tao XM, Yuen CWM, Yeung KW (1999) Low temperature plasma treatment of linen. Text Res J 69:846–855CrossRefGoogle Scholar
  32. Wong KK, Tao XM, Yuen CWM, Yeung KW (2000) Topographical study of low temperature plasma treated flax fibers. Text Res J 70:886–893CrossRefGoogle Scholar
  33. Wu M, Kuga S, Huang Y (2008) Quasi-one-dimensional arrangement of silver nanoparticles templated by cellulose microfibrils. Langmuir 24(18):10494–10497CrossRefGoogle Scholar
  34. Zhang F, Wu X, Chen Y, Lin H (2009) Application of silver nanoparticles to cotton fabric as an antibacterial textile finish. Fiber Polym 10:496–501CrossRefGoogle Scholar
  35. Zielinska A, Skwarek E, Zaleska A, Gazdac M, Hupka J (2009) Preparation of silver nanoparticles with controlled particle size. Procedia Chem 1:1560–1566CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • V. Prysiazhnyi
    • 1
  • A. Kramar
    • 2
  • B. Dojcinovic
    • 3
  • A. Zekic
    • 4
  • B. M. Obradovic
    • 4
  • M. M. Kuraica
    • 4
  • M. Kostic
    • 2
  1. 1.Department of Physical Electronics, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.Department of Textile Engineering, Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  3. 3.Center of Chemistry, Institute of Chemistry, Technology and MetallurgyBelgradeSerbia
  4. 4.Faculty of PhysicsUniversity of BelgradeBelgradeSerbia

Personalised recommendations