, Volume 20, Issue 1, pp 211–215 | Cite as

Rapid preparation of cellulose nanofibre sheet

  • Swambabu Varanasi
  • Warren J. Batchelor
Original Paper


Cellulose nanofibre sheet materials are of great interest in various applications because of their excellent properties, but are difficult to prepare rapidly and as large sheets. This paper describes a quick preparation procedure for preparing optically transparent, flat and smooth nanofibre sheets, which is much quicker than existing methods. Low permeability, optical transparency, high strength and high density show that nanofibres were well dispersed. The preparation time for the nanofibre sheet produced here was 10 min whereas the preparation times reported in literature is above 1 h. The decrease in sheet preparation time suggests that this method can be used for commercial applications.


Dimensions Filtration time Rapid preparation Solids concentration Solids retention 



The authors thank Liyuan Zhang for helping us to develop the method for separating nanofibres from the Daicel sample. We would like to thank Liyuan Zhang, Sigappi Narayanan and Scot Sharman, for experimental assistance. We acknowledge the financial support of the Australian Research Council, Australian Paper, Nopco Australasia, Norske Skog, SCA Hygiene Australasia and Visy through Linkage Project Grants LP0989823 and LP0990526. Swambabu Varanasi thanks Monash University for a MGS and FEIPRS Scholarship. The authors would like to acknowledge the facilities used with the Monash Center for Electron Microscopy.


  1. Batchelor WJ, Gras SL, Lee RWQ, Wang LS (2009) Cellulose nanofibre nonwovens. In: CHEMECA 2009, Canberra, September 2009. Engineers Australia, pp 1–11Google Scholar
  2. Eichhorn S, Dufresne A, Aranguren M, Marcovich N, Capadona J, Rowan S, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito A, Mangalam A, Simonsen J, Benight A, Bismarck A, Berglund L, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33. doi: 10.1007/s10853-009-3874-0 CrossRefGoogle Scholar
  3. Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1):162–165. doi: 10.1021/bm801065u CrossRefGoogle Scholar
  4. Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579–1585. doi: 10.1021/bm800038n CrossRefGoogle Scholar
  5. Jonoobi M, Mathew AP, Oksman K (2012) Producing low-cost cellulose nanofiber from sludge as new source of raw materials. Ind Crops Prod 40:232–238. doi: 10.1016/j.indcrop.2012.03.018 CrossRefGoogle Scholar
  6. Martinez DM, Buckley K, Jivan S, Lindstrom A, Thiruvengadaswamy R, Olson JA, Ruth TJ, Kerekes RJ (2001) Characterizing the mobility of papermaking fibres during sedimentation. Paper presented at the Science of Papermaking Transactions of the 12th Fundamental Research Symposium, OxfordGoogle Scholar
  7. Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A Mater Sci Process 78(4):547–552. doi: 10.1007/s00339-003-2453-5 CrossRefGoogle Scholar
  8. Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21(16):1595–1598. doi: 10.1002/adma.200803174 CrossRefGoogle Scholar
  9. Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11(9):2195–2198. doi: 10.1021/bm100490s CrossRefGoogle Scholar
  10. Spence K, Venditti R, Rojas O, Habibi Y, Pawlak J (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17(4):835–848. doi: 10.1007/s10570-010-9424-8 CrossRefGoogle Scholar
  11. Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Res 48(24):11211–11219. doi: 10.1021/ie9011672 CrossRefGoogle Scholar
  12. Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16(1):75–85. doi: 10.1007/s10570-008-9244-2 CrossRefGoogle Scholar
  13. Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibres. Polym Int 47(3):291–294. doi: 10.1002/(sici)1097-0126(199811)47:3<291:aid-pi11>;2-1 CrossRefGoogle Scholar
  14. Varanasi S, Chiam HH, Batchelor WJ (2012) Application and interpretation of zero and short-span testing on nanofibre sheet materials. Nord Pulp Pap Res J 27(2):9CrossRefGoogle Scholar
  15. Zhang L, Batchelor W, Varanasi S, Tsuzuki T, Wang X (2012) Effect of cellulose nanofiber dimensions on sheet forming through filtration. Cellulose 19(2):561–574. doi: 10.1007/s10570-011-9641-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Australian Pulp and Paper InstituteMonash UniversityMelbourneAustralia

Personalised recommendations