, Volume 19, Issue 6, pp 2057–2067 | Cite as

Characterization of viscose fibers modified with 6-deoxy-6-amino cellulose sulfate

  • Taha Genco
  • Lidija Fras ZemljičEmail author
  • Matej Bračič
  • Karin Stana-Kleinschek
  • Thomas Heinze
Original Paper


Cellulose viscose fibres were functionalized by novel amino cellulose sulfates (ACS), namely 6-deoxy-6-(ω-aminoethyl) amino cellulose-2,3(6)-O-sulfate (AECS), and 6-deoxy-6-(2-(bis-N′,N′-(2-aminoethyl)aminoethyl)) amino cellulose-2,3(6)-O-sulfate (BAECS). In this way an amphoteric characteristics were introduced onto cellulose viscose fibers which is extremely important by fiber applications. Whilst cellulose fibers possess only negligible carboxyl groups’ content, the coating of fibers by AECS and BAECS, respectively, introduces new functional groups to the fibers; as positively-charged amino groups and negatively-charged sulfate groups. The typical functional groups within the non-coated fibers, as well in the ACS-coated fibers, were characterized by means of X-ray photoelectron spectroscopy, conductometric-, potentiometric and polyelectrolyte titrations, as well as conventionally by the spectroscopic methylene-blue method. The electro-kinetic behavior was evaluated by measuring the zeta-potential of the fibers as a function of pH. The amounts of the positive-charges (introduced protonated amino groups) determined by potentiometric titration agreed with the amounts of the positive charges determined by conductometric titration. The total amounts of negatively-charged fiber groups (sulfate and carboxyl) determined by polyelectrolyte titration were 38.8 and 32.1 mMol kg−1 for AECS-Vis and BAECS-Vis, respectively, and these results were in accordance with the conventional methylene-blue method.


Amphoteric fibers Polyelectrolyte titration Cellulosic fibers Amino cellulose sulfate 



The research leading to this work received funding from the European Community’s Seventh Framework program [FP7/2007-2013] under grant agreement no. 214015. We would like to thank Dr. Silvo Hribernik for his technical help during the Zeta potential measurements.


  1. Aubay E, Fleury E, Harrison I (2006) Use of amphoteric polysaccharide for treating textile fiber articles. US7074919B2Google Scholar
  2. Bellmann C, Caspari A, Albrecht V, Doan TTL, Mäder E, Luxbacher T, Kohl R (2005) Electrokinetic properties of natural fibres. Colloids Surf A 267(1–3):19–23. doi: 10.1016/j.colsurfa.2005.06.033 CrossRefGoogle Scholar
  3. Bhardwaj NK, Hoang V, Nguyen KL (2007) Effect of refining on pulp surface charge accessible to polydadmac and FTIR characteristic bands of high yield kraft fibres. Bioresour Technol 98(4):962–966. doi: 10.1016/j.biortech.2006.03.001 CrossRefGoogle Scholar
  4. Brumer H, Zhou Q, Baumann MJ, Carlsson K, Teeri TT (2004) Activation of crystalline cellulose surfaces through the chemoenzymatic modification of xyloglucan. J Am Chem Soc 126(18):5715–5721. doi: 10.1021/ja0316770 CrossRefGoogle Scholar
  5. Buchert J, Pere J, Johansson L-S, Campbell JM (2001) Analysis of the surface chemistry of linen and cotton fabrics. Text Res J 71(7):626–629. doi: 10.1177/004051750107100710 CrossRefGoogle Scholar
  6. Cakara D, Fras L, Bracic M, Kleinschek KS (2009) Protonation behavior of cotton fabric with irreversibly adsorbed chitosan: a potentiometric titration study. Carbohydr Polym 78:36–40. doi: 10.1016/j.carbpol.2009.04.011 CrossRefGoogle Scholar
  7. Elizer LH (1972) Textile treatment with amphoteric starch. US3676205AGoogle Scholar
  8. Filpponen I, Kontturi E, Nummelin S, Rosilo H, Kolehmainen E, Ikkala O, Laine J (2012) Generic method for modular surface modification of cellulosic materials in aqueous medium by sequential “click” reaction and adsorption. Biomacromolecules 13(3):736–742. doi: 10.1021/bm201661k CrossRefGoogle Scholar
  9. Fras Zemljic L, Sauperl O, But I, Zabret A, Lusicky M (2011) Viscose material functionalized by chitosan as a potential treatment in gynecology. Text Res J 81(11):1183–1190. doi: 10.1177/0040517510397572 CrossRefGoogle Scholar
  10. Fras Zemljič L, Stenius P, Laine J, Stana-Kleinschek K (2008) Topochemical modification of cotton fibres with carboxymethyl cellulose. Cellulose 15(2):315–321. doi: 10.1007/s10570-007-9175-3 CrossRefGoogle Scholar
  11. Fras L, Laine J, Stenius P, Stana-Kleinschek K, Ribitsch V, Doleček V (2004) Determination of dissociable groups in natural and regenerated cellulose fibers by different titration methods. J Appl Polym Sci 92(5):3186–3195. doi: 10.1002/app.20294 CrossRefGoogle Scholar
  12. Fras L, Johansson LS, Stenius P, Laine J, Stana-Kleinschek K, Ribitsch V (2005) Analysis of the oxidation of cellulose fibres by titration and XPS. Colloids Surf A 260(1–3):101–108. doi: 10.1016/j.colsurfa.2005.01.035 CrossRefGoogle Scholar
  13. Genco T, Zemljic LF, Bracic M, Stana-Kleinschek K, Heinze T (2012) Physicochemical properties and bioactivity of a novel class of cellulosics: 6-deoxy-6-amino cellulose sulfate. Macromol Chem Phys 213:539–548. doi: 10.1002/macp.201100571 CrossRefGoogle Scholar
  14. Ghosh AK (2009) Introduction to measurements and instrumentation, 3rd edn. PHI Learning, New DelhiGoogle Scholar
  15. Heinze T, Genco T, Petzold-Welcke K, Wondraczek H (2012) Synthesis and characterization of aminocellulose sulfates as novel ampholytic polymers. Cellulose 19(4):1305–1313. doi: 10.1007/s10570-012-9725-1 CrossRefGoogle Scholar
  16. Hirshfield JJ (1964) Treatment for synthetic fiber flocks. BE637652Google Scholar
  17. Johansson L-S (2002) Monitoring fibre surfaces with XPS in papermaking processes. Microchim Acta 138(3):217–223. doi: 10.1007/s006040200025 CrossRefGoogle Scholar
  18. Johansson L-S, Campbell J, Koljonen K, Kleen M, Buchert J (2004) On surface distributions in natural cellulosic fibres. Surf Interface Anal 36(8):706–710. doi: 10.1002/sia.1741 CrossRefGoogle Scholar
  19. Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry, vol 1. Wiley, WeinheimCrossRefGoogle Scholar
  20. Laine J, Stenius P (1997) Effect of charge on the fiber and paper properties of bleached industrial kraft pulps. Pap Puu 79:257–266Google Scholar
  21. Laine J, Buchert J, Viikari L, Stenius P (1996) Characterization of unbleached kraft pulps by enzymic treatment, potentiometric titration and polyelectrolyte adsorption. Holzforschung 50:208–214. doi: 10.1515/hfsg.1996.50.3.208 CrossRefGoogle Scholar
  22. Myllytie P, Salmi J, Laine J (2009) The influence of pH on the adsorption and interaction of chitosan with cellulose. BioResources 4:1647–1662Google Scholar
  23. Peršin Z, Stana-Kleinschek K, Sfiligoj-Smole M, Kre T, Ribitsch V (2004) Determining the surface free energy of cellulose materials with the powder contact angle method. Text Res J 74(1):55–62. doi: 10.1177/004051750407400110 CrossRefGoogle Scholar
  24. Peršin Z, Stenius P, Stana-Kleinschek K (2011) Estimation of the surface energy of chemically and oxygen plasma-treated regenerated cellulosic fabrics using various calculation models. Text Res J 81(16):1673–1685. doi: 10.1177/0040517511410110 CrossRefGoogle Scholar
  25. Ramesh Kumar A, Teli MD (2007) Electrokinetic studies of modified cellulosic fibres. Colloids Surf A 301(1–3):462–468. doi: 10.1016/j.colsurfa.2007.01.021 CrossRefGoogle Scholar
  26. Reischl M, Stana-Kleinschek K, Ribitsch V (2006) Electrokinetic investigations of oriented cellulose polymers. Macromolecular Symposia 244(1):31–47. doi: 10.1002/masy.200651203 CrossRefGoogle Scholar
  27. Reischl M, Kostler S, Kellner G, Stana-Kleinschek K, Ribitsch V (2008) Oscillating streaming potential measurement system for macroscopic surfaces. Rev Sci Instrum 79(11):113902–113906CrossRefGoogle Scholar
  28. Stana-Kleinschek K, Ribitsch V (1998) Electrokinetic properties of processed cellulose fibers. Colloids Surf A 140(1–3):127–138. doi: 10.1016/s0927-7757(97)00301-4 CrossRefGoogle Scholar
  29. Stana-Kleinschek K, Kreze T, Ribitsch V, Strnad S (2001) Reactivity and electrokinetical properties of different types of regenerated cellulose fibres. Colloids Surf A 195(1–3):275–284. doi: 10.1016/s0927-7757(01)00852-4 CrossRefGoogle Scholar
  30. Stana-Kleinschek K, Ribitsch V, Kreze T, Fras L (2002) Determination of the adsorption character of cellulose fibres using surface tension and surface charge. Mater Res Innovations 6(1):13–18. doi: 10.1007/s10019-002-0168-4 CrossRefGoogle Scholar
  31. Waagberg L, Oedberg L, Glad-Nordmark G (1989) Charge determination of porous substrates by polyelectrolyte adsorption. Part 1. Carboxymethylated, bleached cellulosic fibers. Nord Pulp Pap Res J 4:71–76CrossRefGoogle Scholar
  32. Zemljič L, Peršin Z, Stenius P, Kleinschek K (2008) Carboxyl groups in pre-treated regenerated cellulose fibres. Cellulose 15(5):681–690. doi: 10.1007/s10570-008-9216-6 CrossRefGoogle Scholar
  33. Zhang Y, Sjogren B, Engstrand P, Htun M (1994) Determination of charged groups in mechanical pulp fibers and their influence on pulp properties. J Wood Chem Technol 14:83–102. doi: 10.1080/02773819408003087 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Taha Genco
    • 1
  • Lidija Fras Zemljič
    • 2
    Email author
  • Matej Bračič
    • 2
  • Karin Stana-Kleinschek
    • 2
  • Thomas Heinze
    • 1
  1. 1.Friedrich Schiller University of Jena, Institute for Organic Chemistry and Macromolecular ChemistryCenter of Excellence for Polysaccharide ResearchJenaGermany
  2. 2.Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical EngineeringUniversity of MariborMariborSlovenia

Personalised recommendations