Advertisement

Cellulose

, Volume 19, Issue 6, pp 1821–1836 | Cite as

Deformation of cellulose nanocrystals: entropy, internal energy and temperature dependence

  • Jakob WohlertEmail author
  • Malin Bergenstråhle-Wohlert
  • Lars A. Berglund
Original Paper

Abstract

An in-depth analysis was performed of the molecular deformation mechanisms in cellulose during axial stretching. For the first time, it was demonstrated that entropy affects the stiffness of cellulose nanocrystals significantly. This was achieved through Molecular Dynamics simulations of model nanocrystals subject to constant stress in the axial direction, for nanocrystals of varying lateral dimensions and at different temperatures. The simulations were analyzed in terms of Young’s modulus E, which is a measure of the elastic response to applied stress. A weak but significant temperature dependence was shown, with ∂E/∂T =  −0.05 Gpa K−1 at room temperature, in agreement with experimental numbers. In order to analyze the respective contributions from internal energy and entropy, a decomposition of the total response of the free energy with respect to strain was made. It was shown that the decrease in E with increasing T is due to entropy, and that the magnitude of the decrease is 6–9 % at room temperature compared to the value at 0 K. This was also shown independently by a direct calculation of the vibrational entropy of the cellulose crystal. Finally, it was found that internal hydrogen bonds are contributing to the stiffness by 20 %, mainly by stabilizing the cellulose internal structure.

Keywords

Elastic modulus Cellulose nanocrystals Molecular dynamics Temperature dependence 

Notes

Acknowledgments

The authors thank Y. Nishiyama for bringing the work of Nakamoe and Nishino (1998) to their attention, C. Smith for helping with the translation, and P. T. Larsson for helpful discussions. Computer time was provided by PDC Center for High Performance Computing at KTH Royal Institute of Technology. Molecular graphics were produced using VMD (Humphrey et al. 1996).

Supplementary material

10570_2012_9774_MOESM1_ESM.pdf (51 kb)
PDF (50 KB)

References

  1. Autieri E, Sega M, Guella G (2010) Puckering free energy of pyranoses: a NMR and metadynamics-umbrella sampling investigation. J Chem Phys 133:095,104CrossRefGoogle Scholar
  2. Baron R, Hünenberger PH, McCammon JA (2009) Absolute single-molecule entropies from quasi-harmonic analysis of microsecond molecular dynamics: Correction terms and convergence properties. J Chem Theory Comput 5:3150–3160CrossRefGoogle Scholar
  3. Benzerga A, Hong S, Kim K, Needleman A, van der Giessen E (2001) Smaller is softer: an inverse size effect in a cast aluminium alloy. Acta mater 49:3071–3083CrossRefGoogle Scholar
  4. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) In: Pullman BE (ed) Intermolecular forces. Riedel, Dordrecht, p 331Google Scholar
  5. Bergenstråhle M, Berglund LA, Mazeau K (2007) Thermal response in crystalline Iβ cellulose: a molecular dynamics study. J Phys Chem B 111:9138–9145CrossRefGoogle Scholar
  6. Bergenstråhle M, Wohlert J, Himmel ME, Brady JW (2010) Simulation studies of the insolubility of cellulose. Carbohydr Res 345:2060–2066CrossRefGoogle Scholar
  7. Berglund LA, Peijs T (2010) Cellulose biocomposites—from bulk moldings to nanostructured systems. MRS Bull 35:201–207CrossRefGoogle Scholar
  8. Chen P, Nishiyama Y, Mazeau K (2012) Torsional entropy at the origin of reversible temperature-induced phase transition of cellulose. Macromol 45:362–368CrossRefGoogle Scholar
  9. Cintrón MS, Johnson GP, French A (2011) Young’s modulus calculations for cellulose I β by mm3 and quantum mechanics. Cellulose 18:505–516CrossRefGoogle Scholar
  10. Cuenot S, Frétigny C, Demoustier-Champagne S, Nysten B (2004) Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys Rev B 69:165,410CrossRefGoogle Scholar
  11. Davidson TC, Newman RH, Ryan MJ (2004) Variations in the fibre repeat between samples of cellulose I from different sources. Carbohydr Res 339:2889–2893CrossRefGoogle Scholar
  12. Di Nola A, Berendsen HJC, Edholm O (1984) Free energy determination of polypeptide conformations generated by molecular dynamics. Macromol 17:2044–2050CrossRefGoogle Scholar
  13. Diddens I, Murphy B, Krish M, Müller M (2008) Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromol 41:9755–9759CrossRefGoogle Scholar
  14. Durell SR, Brooks BR, Ben-Naim AJ (1994) Solvent-induced forces between two hydrophilic groups. J Phys Chem 98:2198–2202CrossRefGoogle Scholar
  15. Eichhorn SJ, Davies GR (2006) Modelling the crystalline deformation of native and regenerated cellulose. Cellulose 13:291–307CrossRefGoogle Scholar
  16. Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce woods. Proc Natl Acad Sci 108:E1195–E1203CrossRefGoogle Scholar
  17. Guhados G, Wan W, Hutter J (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21:6642–6646CrossRefGoogle Scholar
  18. Guvench O, Greene SN, Kamath G, Brady JW, Venable RM, Pastor RW, MacKerell, Jr AD (2008) Additive empirical force field for hexopyranose monosaccharides. J Comput Chem 29:2543–2564CrossRefGoogle Scholar
  19. Guvench O, Hatcher E, Venable RM, Pastor RW, MacKerell, Jr AD (2009) CHARMM aditive all-atom force field for glycosidic linkages between hexopyranoses. J Chem Theory Comput 5:2353–2370CrossRefGoogle Scholar
  20. Hansen HS, Hünenberger PH (2011) A reoptimized GROMOS force field for hexapyranose-based carbohydrates accounting for the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers and glycosidic linkage conformers. J Comput Chem 32:998–1032CrossRefGoogle Scholar
  21. Heiner AP, Teleman O (1997) Interface between monoclinic crystalline cellulose and water: Breakdown of the odd/even duplicity. Langmuir 13:511 – 518CrossRefGoogle Scholar
  22. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447CrossRefGoogle Scholar
  23. Hori R, Wada M (2005) The thermal expansion of wood cellulose crystals. Cellulose 12:479–484CrossRefGoogle Scholar
  24. Hsieh YC, Yano H, Nogi M, Eichhorn SJ (2008) An estimation of the Young’s modulus of bacterial cellulose filaments. Cellulose 15:507–513CrossRefGoogle Scholar
  25. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar
  26. Ishikawa A, Okano T, Sugiyama J (1997) Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, IIII and IVI. Polymer 38:463–468CrossRefGoogle Scholar
  27. Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromol 10:2571–2576CrossRefGoogle Scholar
  28. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRefGoogle Scholar
  29. Karplus M, Kushick JN (1981) Method for estimating the configurational entropy of macromolecules. Macromolecules 14:325–332CrossRefGoogle Scholar
  30. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRefGoogle Scholar
  31. Kroon-Batenburg LMJ, Kroon J, Northolt MG (1986) Chain modulus and intramolecular hydrogen bonding in native and regenerated cellulose fibers. Polymer 27(10):290–292Google Scholar
  32. Lacks DJ, Rutledge GC (1994) Mechanisms for axial thermal contraction in polymer crystals: polyethylene vs isotactic polypropylene. Chem Eng Sci 49:2881–2888CrossRefGoogle Scholar
  33. Lins RD, Hünenberger PH (2005) A new Gromos force field for hexapyranose-based carbohydrates. J Comput Chem 26:1400–1412CrossRefGoogle Scholar
  34. Matsuo M, Sawatari C, Iwai Y, Ozaki F (1990) Effect of orientation distribution and crystallinity on the measurement by X-ray diffraction of the crystal lattice moduli of cellulose I and II. Macromolecules 23:3266–3275CrossRefGoogle Scholar
  35. Matthews JF, Bergenstråhle M, Beckham GT, Himmel ME, Nimlos MR, Brady JW, Crowley MF (2011) High temperature behavior of cellulose i. J Phys Chem B 115:2155–2166CrossRefGoogle Scholar
  36. Miller R, Shenoy V (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11:139–147CrossRefGoogle Scholar
  37. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefGoogle Scholar
  38. Nakamoe K, Nishino T (1998) Molecular structure and the elastic modulus of the crystalline regions of cellulose polymorphs and their derivatives. Cellul Commun 5:73–78Google Scholar
  39. Nakamura K, Wada M, Kuga S, Okano T (2004) Poisson’s ratio of cellulose Iβ and cellulose II. J Polymer Sci B 42:1206–1211CrossRefGoogle Scholar
  40. Neyertz S, Pizzi A, Merlin A, Maigret B, Brown D, Deglise X (2000) A new all-atom force field for crystalline cellulose I. J Appl Polym Sci 78:1939–1946CrossRefGoogle Scholar
  41. Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline region of cellulose polymorphs. J Polym Sci B 33:1647–1651CrossRefGoogle Scholar
  42. Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687CrossRefGoogle Scholar
  43. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRefGoogle Scholar
  44. Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose I-beta. Biomacromolecules 9:3133–3140CrossRefGoogle Scholar
  45. Nishiyama Y, Langan P, Wada M, Forsyth VT (2010) Looking at hydrogen bonds in cellulose. Acta Cryst D66:1172–1177CrossRefGoogle Scholar
  46. Reiling S, Brickmann J (1995) Theoretical investigations on the structure and physical properties of cellulose. Macromol Theory Simul 4:725–743CrossRefGoogle Scholar
  47. Rutledge GC (1997) Thermomechanical properties of the crystal phase of poly(ethylene terephtalate) by molecular modeling. Macromol 30:2785–2791CrossRefGoogle Scholar
  48. Rutledge GC, Suter UW (1991) Calculation of mechanical properties of poly(p-phenylene terephtalamide) by atomistic modelling. Polymer 32:2179–2189CrossRefGoogle Scholar
  49. Sakurada I, Ito T, Nakamae K (1964) Elastic moduli of polymer crystals for the chain axial directino. Makromol Chem 75:1–10CrossRefGoogle Scholar
  50. Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stree-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061CrossRefGoogle Scholar
  51. Takahashi M, Takenaka H (1982) X-ray study of thermal expansion and transition of crystalline celluloses. Polym J 14:675–679CrossRefGoogle Scholar
  52. Tanaka F, Iwata T (2006) Estimation of the elastic modulus of cellulose crystal by molecular mechanics simulation. Cellulose 13:509–517CrossRefGoogle Scholar
  53. Tashiro K, Kobayashi M (1991) Calculation of crystallite modulus of native cellulose. Polym Bull 14:213–218Google Scholar
  54. Wada M, Hori R, Kim UJ, Sasaki S (2010) X-ray diffraction study on the thermal expansion behavior of cellulose iβ and its hig-temperature phase. Polym Degrad Stabil 95:1330–1334CrossRefGoogle Scholar
  55. Wainwright SA, Biggs WD, Currey JD, Gosline JM (1976) Mechanical design in organisms. Princeton University Press, PrincetonGoogle Scholar
  56. Wu X, Moon RJ, Martini A (2011) Calculation of single chain cellulose elasticity using fully atomistic modeling. TAPPI J 10:37–42Google Scholar
  57. Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155CrossRefGoogle Scholar
  58. Zhang Q, Bulone V, Ågren H, Tu Y (2011) A molecular dynamics study of the thermal response of crystalline cellulose Iβ. Cellulose 18:207–221CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Jakob Wohlert
    • 1
    Email author
  • Malin Bergenstråhle-Wohlert
    • 1
  • Lars A. Berglund
    • 1
  1. 1.Wallenberg Wood Science CenterKTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations