Advertisement

Cellulose

, Volume 19, Issue 6, pp 2141–2151 | Cite as

Covalent assembly of metal nanoparticles on cellulose fabric and its antimicrobial activity

  • Sung Yong Park
  • Jae Woo Chung
  • Rodney D. Priestley
  • Seung-Yeop KwakEmail author
Original Paper

Abstract

We develop an antimicrobial active robust metal-cellulose nanohybrid by covalent assembly of metal nanoparticles on cellulose fabric using a simple impregnation of thiol-modified cellulose fabric in colloidal silver (Ag) or palladium (Pd) nanoparticle solutions. The combined results of high resolution transmission electron microscopy (HR-TEM), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDXS) and inductively coupled plasma atomic emission spectrometry (ICP-AES) reveal that the nanoparticles are highly loaded and dispersed in the thiol-modified cellulose fabric, and X-ray photoelectron spectroscopy (XPS) analysis reveals that the nanoparticles are immobilized in the fabric by a strong and stable covalent bond with thiol functional group. This robust covalent linkage between the nanoparticles and the fabric leads to a remarkable suppression of the release of metal nanoparticles from the fabric. In addition, the metal-cellulose nanohybrids show high antimicrobial activity in excess of 99.9 % growth inhibition of the microorganism. Thus, we anticipate that our metal-cellulose nanohybrid may not only protect cell damage caused by penetration and fixation of metal nanoparticles into the human body but also act as a sustainable biomedical textile.

Keywords

Antimicrobial activity Covalent bonding Metal-cellulose nanohybrids Silver nanoparticles Palladium nanoparticles 

Notes

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (R11-2005-065).

Supplementary material

10570_2012_9773_MOESM1_ESM.doc (1.1 mb)
Supplementary material 1 (DOC 1172 kb)

References

  1. Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, Hong Y (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233(3):404–410CrossRefGoogle Scholar
  2. AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290CrossRefGoogle Scholar
  3. Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11):4133–4139CrossRefGoogle Scholar
  4. Caro C, López-Cartes C, Zaderenko P, Mejías JA (2008) Thiol-immobilized silver nanoparticle aggregate films for surface enhanced Raman scattering. J Raman Spectrosc 39(9):1162–1169CrossRefGoogle Scholar
  5. Chen K, Robinson HD (2011) Robust dithiocarbamate-anchored amine functionalization of Au nanoparticles. J Nanopart Res 13(2):751–761. doi: 10.1021/ma00210a028 CrossRefGoogle Scholar
  6. Dong H, Hinestroza JP (2009) Metal nanoparticles on natural cellulose fibers: electrostatic assembly and in situ synthesis. ACS Appl Mater Interfaces 1(4):797–803. doi: 10.1021/am800225j CrossRefGoogle Scholar
  7. Gaarenstroom SW, Winograd N (1977) Initial and final state effects in the ESCA spectra of cadmium and silver oxides. J Chem Phys 67(8):3500–3506CrossRefGoogle Scholar
  8. Geranio L, Heuberger M, Nowack B (2009) The behavior of silver nano textiles during washing. Environ Sci Technol 43(21):8113–8118CrossRefGoogle Scholar
  9. Gorenšek M, Recelj P (2009) Reactive dyes and nano-silver on PA6 micro knitted goods. Text Res J 79(2):138–146CrossRefGoogle Scholar
  10. He J, Kunitake T, Nakao A (2003) Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem Mater 15(23):4401–4406. doi: 10.1021/cm034720r CrossRefGoogle Scholar
  11. Ho TL (1975) The hard soft acids bases (HSAB) principle and organic chemistry. Chem Rev 75(1):1–20CrossRefGoogle Scholar
  12. Hu B, Zhao Y, Zhu HZ, Yu SH (2011) Selective chromogenic detection of thiol-containing biomolecules using carbonaceous nanospheres loaded with silver nanoparticles as carrier. ACS Nano 5(4):3166–3171CrossRefGoogle Scholar
  13. Kalita M, Basel MT, Janik K, Bossmann SH (2009) Optical and electronic properties of metal and semiconductor nanostructures. In: Nanoscale materials in chemistry. Wiley, London, pp 537–578. doi: 10.1002/9780470523674.ch16
  14. Králik M, Biffis A (2001) Catalysis by metal nanoparticles supported on functional organic polymers. J Mol Catal A Chem 177(1):113–138CrossRefGoogle Scholar
  15. Ladhe AR, Frailie P, Hua D, Darsillo M, Bhattacharyya D (2009) Thiol-functionalized silica-mixed matrix membranes for silver capture from aqueous solutions: experimental results and modeling. J Membr Sci 326(2):460–471CrossRefGoogle Scholar
  16. Larese FF, D’Agostin F, Crosera M, Adami G, Renzi N, Bovenzi M, Maina G (2009) Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology 255(1–2):33–37CrossRefGoogle Scholar
  17. Lee HJ, Yeo SY, Jeong SH (2003) Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J Mater Sci 38(10):2199–2204CrossRefGoogle Scholar
  18. Lee HY, Park HK, Lee YM, Kim K, Park SB (2007) A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chem Commun 28:2959–2961. doi: 10.1039/b703034g CrossRefGoogle Scholar
  19. McKenna KP (2009) Unique bonding in nanoparticles and powders. In: Nanoscale materials in chemistry. Wiley, London, pp 15–36. doi: 10.1002/9780470523674.ch2
  20. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353CrossRefGoogle Scholar
  21. Niskanen J, Shan J, Tenhu H, Jiang H, Kauppinen E, Barranco V, Picó F, Yliniemi K, Kontturi K (2010) Synthesis of copolymer-stabilized silver nanoparticles for coating materials. Colloid Polym Sci 288(5):543–553CrossRefGoogle Scholar
  22. Park SY, Ryu S-Y, Kwak S-Y (2011) Antibacterial metal-fiber hybrid with covalent assembly of silver and palladium nanoparticles on cellulose fibers. In: 2010 international conference on biology, environment and chemistry, Hong Kong, 12. 28–30. 2010. 2011. IPCBEE, pp 183–186Google Scholar
  23. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85(22):3533–3539CrossRefGoogle Scholar
  24. Pearson RG, Songstad J (1967) Application of the principle of hard and soft acids and bases to organic chemistry. J Am Chem Soc 89(8):1827–1836CrossRefGoogle Scholar
  25. Perelshtein I, Applerot G, Perkas N, Guibert G, Mikhailov S, Gedanken A (2008) Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 19(24):245705–245711Google Scholar
  26. Piao YZ, Jang YJ, Shokouhimehr M, Lee IS, Hyeon T (2007) Facile aqueous-phase synthesis of uniform palladium nanoparticles of various shapes and sizes. Small 3(2):255–260. doi: 10.1002/smll.200600402 CrossRefGoogle Scholar
  27. Rance GA, Khlobystov AN (2010) Nanoparticle-nanotube electrostatic interactions in solution: the effect of pH and ionic strength. PCCP 12(36):10775–10780CrossRefGoogle Scholar
  28. Rodriguez JA, Hrbek J (1999) Interaction of sulfur with well-defined metal and oxide surfaces: unraveling the mysteries behind catalyst poisoning and desulfurization. Acc Chem Res 32(9):719–728CrossRefGoogle Scholar
  29. Romanska D, Mazur M (2003) Electrochemical preparation of thiol-coated silver nanostructures on highly oriented pyrolytic graphite. Langmuir 19(11):4532–4534CrossRefGoogle Scholar
  30. Savard D, Bedard LP, Barnes SJ (2006) TCF selenium preconcentration in geological materials for determination at sub-mu gg(-1) with INAA (Se/TCF-INAA). Talanta 70(3):566–571. doi: 10.1016/j.talanta.2006.01.010 CrossRefGoogle Scholar
  31. Schmid G, Simon U (2005) Gold nanoparticles: assembly and electrical properties in 1–3 dimensions. Chem Commun 6:697–710CrossRefGoogle Scholar
  32. Schnippering M, Carrara M, Foelske A, Kotz R, Fermin DJ (2007) Electronic properties of Ag nanoparticle arrays. A Kelvin probe and high resolution XPS study. PCCP 9:725–730. doi: 10.1039/b611496b CrossRefGoogle Scholar
  33. Serp P, Corrias M, Kalck P (2003) Carbon nanotubes and nanofibers in catalysis. Appl Catal A Gen 253(2):337–358CrossRefGoogle Scholar
  34. Shateri Khalil-Abad M, Yazdanshenas ME, Nateghi MR (2009) Effect of cationization on adsorption of silver nanoparticles on cotton surfaces and its antibacterial activity. Cellulose 16(6):1147–1157CrossRefGoogle Scholar
  35. Shen JS, Xu B (2011) In situ encapsulating silver nanocrystals into hydrogels. A “green” signaling platform for thiol-containing amino acids or small peptides. Chem Commun 47(9):2577–2579CrossRefGoogle Scholar
  36. Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chem Phys Chem 1(1):18–52CrossRefGoogle Scholar
  37. Smiechowicz E, Kulpinski P, Niekraszewicz B, Bacciarelli A (2011) Cellulose fibers modified with silver nanoparticles. Cellulose 18(4):975–985CrossRefGoogle Scholar
  38. Wolan JT, Hoflund GB (1998) Surface characterization study of AgF and AgF2 powders using XPS and ISS. Appl Surf Sci 125(3–4):251–258CrossRefGoogle Scholar
  39. Xu Y, Xie X, Guo J, Wang S, Wang Y, Mathur VK (2006) Effects of annealing treatment and pH on preparation of citrate-stabilized PtRu/C catalyst. J Power Sour 162(1):132–140CrossRefGoogle Scholar
  40. Yang Z, Liu ZW, Allaker RP, Reip P, Oxford J, Ahmad Z, Ren G (2010) A review of nanoparticle functionality and toxicity on the central nervous system. J R Soc Interface 7(SUPPL. 4):S411–S422. doi: 10.1098/rsif.2010.0158.focus CrossRefGoogle Scholar
  41. Yokota S, Kitaoka T, Opietnik M, Rosenau T, Wariishi H (2008) Synthesis of gold nanoparticles for in situ conjugation with structural carbohydrates. Angew Chem Int Ed Engl 47(51):9866–9869CrossRefGoogle Scholar
  42. Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S (2009) Size-dependent endocytosis of nanoparticles. Adv Mater 21(4):419–424CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Sung Yong Park
    • 1
  • Jae Woo Chung
    • 2
    • 3
  • Rodney D. Priestley
    • 2
  • Seung-Yeop Kwak
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringSeoul National UniversityGwanak-gu, SeoulKorea
  2. 2.Department of Chemical and Biological EngineeringPrinceton UniversityPrincetonUSA
  3. 3.Institute of Advanced Composite MaterialsKorea Institute of Science and TechnologyWanju-gunKorea

Personalised recommendations