Cellulose

, Volume 19, Issue 5, pp 1449–1480 | Cite as

Bamboo fiber and its reinforced composites: structure and properties

  • Dagang Liu
  • Jianwei Song
  • Debbie P. Anderson
  • Peter R. Chang
  • Yan Hua
Review Paper

Abstract

Natural plant fibers have unequivocally contributed economic prosperity and sustainability in our daily lives. Particularly, bamboo fibers have been used for industrial applications as diverse as textiles, paper, and construction. Recent renewed interest in bamboo fiber (BF) is primarily targeted for the replacement or reduction in use of glass fiber from non-renewable resources. In this review, various mechanical, chemical, and biological approaches for the preparation and separation of macro-, micro-, and nano-sized fibers from raw bamboo are summarized. The differences in the mechanical, thermal, and other properties of fibers from different materials are linked to their size, aspect ratio, surface charge and groups, and their function in nature. Biocomposites made of BF are considered to be green, environmentally responsible eco-products. Different processing parameters such as fiber extraction, surface modification, and synthesis of the composites affect the characteristics of composites. Fiber length, orientation, concentration, dispersion, aspect ratio, selection of matrix, and chemistry of the matrix must all be considered during fabrication in order to achieve desirable functionalities and performance. Because of the hydrophilic nature of BF, different methods may be adopted to improve interfacial surface adhesion. A better understanding of the fiber structure and characteristics that influence composite performance could lead to the development of additives, coatings, binders, or sizing suitable for natural fiber and a variety of polymeric matrices.

Keywords

Bamboo fiber Structure Reinforcement Thermoset and thermoplastic composites Biocomposites Interface adhesion 

References

  1. Agarwal BD, Broutman LJ, Chandrashekhara K (2006) Analysis and performance of fiber composites, 3rd edn. Wiley, New YorkGoogle Scholar
  2. Amada S, Ichikawa Y, Munekata T, Nagase Y, Shimizu H (1997) Fiber texture and mechanical graded structure of bamboo. Compos B Eng 28:13–20CrossRefGoogle Scholar
  3. Bao L, Chen Y, Zhou W, Wu Y, Huang Y (2011) Bamboo fibers @ poly(ethylene glycol)-reinforced poly(butylene succinate) biocomposites. J Appl Polym Sci 122:2456–2466CrossRefGoogle Scholar
  4. Bhardwaj R, Mohanty AK, Drzal LT, Pourboghrat F, Misra M (2006) Renewable resource-based green composites from recycled cellulose fiber and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic. Biomacromolecules 7:2044–2051CrossRefGoogle Scholar
  5. Bismarck A, Mishra S, Lampke T (2005) Plant fibers as reinforcement for green composites. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers and biocomposites. CRC Press, USA, pp 36–108Google Scholar
  6. Bledzki AK, Reihmane S, Gassan J (1996) Properties and modification methods for vegetable fibers for natural fiber composites. J Appl Polym Sci 59:1329–1336CrossRefGoogle Scholar
  7. Cai G, Wang J, Nie Y, Tian X, Zhu X, Zhou X (2011) Effects of toughening agents on the behaviors of bamboo plastic composites. Polym Compos 32:1945–1952CrossRefGoogle Scholar
  8. Chang F, Lee S-H, Toba K, Nagatani A, Endo T (2012) Bamboo nanofiber preparation by HCW and grinding treatment and its application for nanocomposite. Wood Sci Technol 46:393–403CrossRefGoogle Scholar
  9. Chattopadhyay SK, Khandal RK, Uppaluri R, Ghoshal AK (2011a) Bamboo fiber reinforced polypropylene composites and their mechanical, thermal, and morphological properties. J Appl Polym Sci 119:1619–1626CrossRefGoogle Scholar
  10. Chattopadhyay SK, Singh S, Pramanik N, Niyogi UK, Khandal RK, Uppaluri R, Ghoshal AK (2011b) Biodegradability studies on natural fibers reinforced polypropylene composites. J Appl Polym Sci 121:2226–2232CrossRefGoogle Scholar
  11. Chen G-Q (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38:2434–2446CrossRefGoogle Scholar
  12. Chen X, Guo Q, Mi Y (1998) Bamboo fiber-reinforced polypropylene composites: a study of the mechanical properties. J Appl Polym Sci 69:1891–1899CrossRefGoogle Scholar
  13. Chen H, Miao M, Ding X (2009) Influence of moisture absorption on the interfacial strength of bamboo/vinyl ester composites. Compos Part A-Appl S 40:2013–2019CrossRefGoogle Scholar
  14. Coats ER, Loge FJ, Wolcott MP, Englund K, McDonald AG (2008) Production of natural fiber reinforced thermoplastic composites through the use of PHB-rich biomass. Bioresource Technol 99:2680–2686CrossRefGoogle Scholar
  15. Das M, Chakraborty D (2006a) Influence of alkali treatment on the fine structure and morphology of bamboo fibers. J Appl Polym Sci 102:5050–5056CrossRefGoogle Scholar
  16. Das M, Chakraborty D (2006b) Influence of mercerization on the dynamic mechanical properties of bamboo, a natural lignocellulosic composite. Ind Eng Chem Res 45:6489–6492CrossRefGoogle Scholar
  17. Das M, Chakraborty D (2007) Role of mercerization of the bamboo strips on the impact properties and morphology of unidirectional bamboo strips-novolac composites. Polym Compos 28:57–60CrossRefGoogle Scholar
  18. Das M, Chakraborty D (2008) Evaluation of improvement of physical and mechanical properties of bamboo fibers due to alkali treatment. J Appl Polym Sci 107:522–527CrossRefGoogle Scholar
  19. Das M, Chakraborty D (2009a) The effect of alkalization and fiber loading on the mechanical properties of bamboo fiber composites, Part 1:—polyester resin matrix. J Appl Polym Sci 112:489–495CrossRefGoogle Scholar
  20. Das M, Chakraborty D (2009b) Effects of alkalization and fiber loading on the mechanical properties and morphology of bamboo fiber composites. II. Resol matrix. J Appl Polym Sci 112:447–453CrossRefGoogle Scholar
  21. Das M, Pal A, Chakraborty D (2006) Effects of mercerization of bamboo strips on mechanical properties of unidirectional bamboo-novolac composites. J Appl Polym Sci 100:238–244CrossRefGoogle Scholar
  22. Das M, Prasad VS, Chakrabarty D (2009) Thermogravimetric and weathering study of novolac resin composites reinforced with mercerized bamboo fiber. Polym Compos 30:1408–1416CrossRefGoogle Scholar
  23. Deshpande AP, Rao MB, Rao CL (2000) Extraction of BFs and their use as reinforcement in polymeric composites. J Appl Polym Sci 76:83–92CrossRefGoogle Scholar
  24. Fakirov S, Bhattacharyya D (eds) (2007) Handbook of engineering biopolymers: homopolymers, blends and composites. Carl Hanser Verlag, MunichGoogle Scholar
  25. Gatenholm P, Mathiasson A (1994) Biodegradable natural composites. II. Synergistic effects of processing cellulose with PHB. J Appl Polym Sci 51:1231–1237CrossRefGoogle Scholar
  26. González D, Santos V, Parajó JC (2011) Manufacture of fibrous reinforcements for biocomposites and hemicellulosic oligomers from bamboo. Chem Eng J 167:278–287CrossRefGoogle Scholar
  27. Gratani L, Crescente MF, Varone L, Fabrini G, Digiulio E (2008) Growth pattern and photosynthetic activity of different bamboo species growing in the Botanical Garden of Rome. Flora 203:77–84CrossRefGoogle Scholar
  28. Grosser D, Liese W (1971) On the anatomy of Asian bamboos, with special reference to their vascular bundles. Wood Sci Technol 5:290–312CrossRefGoogle Scholar
  29. Han G, Cheng W (2010) Effect of coupling treatment and nanoclay on thermal stability of bamboo flour-filled high density polyethylene composites. Adv Mater Res 113–116:2349–2352CrossRefGoogle Scholar
  30. Han G, Lei Y, Wu Q, Kojima Y, Suzuki S (2008) Bamboo-fiber filled high density polyethylene composites: effect of coupling treatment and nanoclay. J Polym Environ 16:123–130CrossRefGoogle Scholar
  31. He J, Tang Y, Wang S (2007) Differences in morphological characteristics of bamboo fibres and other natural cellulose fibres: studies on X-ray diffraction, solid state 13C-CP/MAS NMR, and second derivative FTIR Spectroscopy data. Iran Polym J 16:807–818Google Scholar
  32. Hesse-Ertelt S, Witter R, Ulrich AS, Kondo T, Heinze T (2008) Spectral assignments and anisotropy data of cellulose I-alpha: 13C-NMR chemical shift data of cellulose I-alpha determined by INADEQUATE and RAI techniques applied to uniformly 13C-labeled bacterial celluloses of different Gluconacetobacter xylinus strains. Magn Reson Chem 46:1030–1036CrossRefGoogle Scholar
  33. Higuchi T (1987) Chemistry and biochemistry of bamboo. Bamboo J 4:132–145Google Scholar
  34. Huang X, Netravali A (2009) Biodegradable green composites made using bamboo micro/nano-fibrils and chemically modified soy protein resin. Compos Sci Technol 69:1009–1015CrossRefGoogle Scholar
  35. Huang Y, Liu H, He P, Yuan L, Xiong H, Xu Y, Yu Y (2010) Nonisothermal crystallization kinetics of modified bamboo fiber/PCL composites. J Appl Polym Sci 116:2119–2125CrossRefGoogle Scholar
  36. Ilvessalo-Pläffli MS (1995) Fiber atlas: identification of papermaking fibers. Springer, Berlin, pp 292–359Google Scholar
  37. Ishii T, Hiroi T (1990) Linkage of phenolic acids to cell wall polysaccharides of bamboo shoot. Carbohydr Res 206:297–310CrossRefGoogle Scholar
  38. Ismail H, Edyham MR, Wirjosentono B (2002a) Bamboo fibre filled natural rubber composites: the effects of filler loading and bonding agent. Polym Test 21:139–144CrossRefGoogle Scholar
  39. Ismail H, Shuhelmy S, Edyham MR (2002b) The effects of a silane coupling agent on curing characteristics and mechanical properties of bamboo fibre filled natural rubber composites. Eur Polym J 38:39–47CrossRefGoogle Scholar
  40. Jain S, Kumar R (1992) Mechanical behaviour of bamboo and bamboo composite. J Mater Sci 27:4598–4604CrossRefGoogle Scholar
  41. Jiang L, Huang J, Qian J, Chen F, Zhang J, Wolcott MP, Zhu Y (2008) Study of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/bamboo pulp fiber composites: effects of nucleation agent and compatibilizer. J Polym Environ 16:83–93CrossRefGoogle Scholar
  42. Jiang L, Chen F, Qian J, Huang J, Wolcott MP, Liu L, Zhang J (2010) Reinforcing and toughening effects of bamboo pulp fiber on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fiber composites. Ind Eng Chem Res 49:572–577CrossRefGoogle Scholar
  43. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohyd Polym 71:343–364CrossRefGoogle Scholar
  44. Kalia S, Avérous L (eds) (2011) Biopolymers: biomedical and environmental applications. John Wiley & Scrivener Publishing, Hoboken, NJGoogle Scholar
  45. Kang JT, Kim SH (2011) Improvement in the mechanical properties of polylactide and bamboo fiber biocomposites by fiber surface modification. Macromol Res 19:789–796CrossRefGoogle Scholar
  46. Kim JY, Peck JH, Hwang S-H, Hong J, Hong SC, Huh W, Lee S-W (2008) Preparation and mechanical properties of poly(vinyl chloride)/bamboo flour composites with a novel block copolymer as a coupling agent. J Appl Polym Sci 108:2654–2659CrossRefGoogle Scholar
  47. Kim BJ, Yao F, Han G, Wu Q (2012) Performance of bamboo plastic composites with hybrid bamboo and precipitated calcium carbonate fillers. Polym Compos 3:68–78CrossRefGoogle Scholar
  48. Klemm D, Schmauder HP, Heinze T (2002) Cellulose. Biopolymers 6:275–319Google Scholar
  49. Kori Y, Kitagawa K, Hamada H (2005) Crystallization behavior and viscoelasticity of bamboo-fiber composites. J Appl Polym Sci 98:603–612CrossRefGoogle Scholar
  50. Krishnaprasad R, Veena NR, Maria HJ, Rajan R, Skrifvars M, Joseph K (2009) Mechanical and thermal properties of bamboo microfibril reinforced polyhydroxybutyrate biocomposites. J Polym Environ 17:109–114CrossRefGoogle Scholar
  51. Kumar S, Choudhary V, Kumar R (2010) Study on the compatibility of unbleached and bleached bamboo-fiber with LLDPE matrix. J Therm Anal Calorim 102:751–761CrossRefGoogle Scholar
  52. Kumar V, Kushwaha PK, Kumar R (2011) Impedance-spectroscopy analysis of oriented and mercerized bamboo fiber-reinforced epoxy composite. J Mater Sci 46:3445–3451CrossRefGoogle Scholar
  53. Kushwaha PK, Kumar R (2010) Bamboo fiber reinforced thermosetting resin composites: effect of graft copolymerization of fiber with methacrylamide. J Appl Polym Sci 118:1006–1013Google Scholar
  54. Li Z (2005) Study on bamboo’s fiber reinforced polypropylene composite. J Fujian College Forestry 25:197–201 (in Chinese)Google Scholar
  55. Li Z, Chen L, Huang Z, Zhan H (2005) Reinforcing mechanical of bamboo fiber reinforced polyamide resin composite. Trans China Pulp Paper 2:19–22 (in Chinese)Google Scholar
  56. Liu Y, Hu H (2008) X-ray diffraction study of bamboo fibers treated with NaOH. Fiber Polym 9:735–739CrossRefGoogle Scholar
  57. Liu H, Wu Q, Han G, Yao F, Kojima Y, Suzuki S (2008) Compatibilizing and toughening bamboo flour-filled HDPE composites: mechanical properties and morphologies. Compos Part A-Appl S 39:1891–1900CrossRefGoogle Scholar
  58. Liu H, Huang Y, Yuan L, He P, Cai Z, Shen Y, Xu Y, Yu Y, Xiong H (2010a) Isothermal crystallization kinetics of modified bamboo cellulose/PCL composites. Carbohyd Polym 79:513–519CrossRefGoogle Scholar
  59. Liu D, Zhong T, Chang PR, Li K, Wu Q (2010b) Starch composites reinforced by bamboo cellulose crystals. Bioresource Technol 101:2529–2536CrossRefGoogle Scholar
  60. Mi Y, Chen X, Cuo Q (1997) Bamboo fiber-reinforced polypropylene composites: crystallization and interfacial morphology. J Appl Polym Sci 64:1267–1273CrossRefGoogle Scholar
  61. Mi Y, Chen X, Cuo Q, Chan C (1999) Bamboo fiber reinforced polypropylene composites. US Patent 5882745Google Scholar
  62. Mishra S, Mohanty AK, Drzal LT, Misra M, Hinrichsen G (2004) A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromol Mater Eng 289:955–974CrossRefGoogle Scholar
  63. Mohanty S, Nayak SK (2007) Rheological characterization of HDPE/sisal fiber composites. Polymer Eng Sci 47:1634–1642CrossRefGoogle Scholar
  64. Mwaikambo LY, Ansell MP (2006) Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials. I. Hemp fibres. J Mater Sci 41:2483–2496CrossRefGoogle Scholar
  65. Nayak SK, Mohanty S, Samal SK (2009) Influence of short bamboo/glass fiber on the thermal, dynamic mechanical and rheological properties of polypropylene hybrid composites. Mater Sci Eng A Struct 523:32–38CrossRefGoogle Scholar
  66. Ogawa K, Hirogaki T, Aoyama E, Katayama T (2004) Data mining of optimum conditions to acquire bamboo micro-fiber with mechanical methods. WIT Trans Built Environ High Perf Struct Mater II 7:441–450Google Scholar
  67. Ogawa K, Hirogaki T, Aoyama E, Imamura H (2008) Bamboo fiber extraction method using a machining center. J Adv Mech Design Sys Manuf 2:550–559CrossRefGoogle Scholar
  68. Okubo K, Fujii T, Thostenson ET (2009) Multi-scale hybrid biocomposite: processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose. Compos Part A-Appl S 40:469–475CrossRefGoogle Scholar
  69. Parameswaran N, Liese W (1976) On the fine structure of bamboo fibres. Wood Sci Technol 10:231–246Google Scholar
  70. Parameswaran N, Liese W (1980) Ultrastructural aspects of bamboo cells. Cellul Chem Technol 14:587–609Google Scholar
  71. Pilla S (ed) (2011) Handbook of bioplastics and biocomposites engineering applications. Scrivener Publishing LLC, USAGoogle Scholar
  72. Rao KMM, Rao KM (2007) Extraction and tensile properties of natural fibers: Vakka, date and bamboo. Compos Struct 77:288–295CrossRefGoogle Scholar
  73. Ratna Prasad AV, Mohana Rao K (2011) Mechanical properties of natural fibre reinforced polyester composites: Jowar, sisal and bamboo. Mater Design 32:4658–4663CrossRefGoogle Scholar
  74. Satyanarayana KG, Sukumaran K, Mukherjee PS, Pavitharan C, Pillai SGK (1990) Natural fibre-polymer composites. Cement Concr Compos 12:117–136CrossRefGoogle Scholar
  75. Saxena M, Gowri VS (2003) Studies on bamboo polymer composites with polyester amide polyol as interfacial agent. Polym Compos 24:428–436CrossRefGoogle Scholar
  76. Serizawa S, Inoue K, Iji M (2006) Kenaf-fiber-reinforced poly (lactic acid) used for electronic products. J Appl Polym Sci 100:618–624CrossRefGoogle Scholar
  77. Shao S, Jin Z, Wen G, Iiyama K (2009) Thermo characteristics of steam-exploded bamboo (Phyllostachys pubescens) lignin. Wood Sci Technol 43:643–652CrossRefGoogle Scholar
  78. Shi QF, Mou HY, Li QY, Wang JK, Guo WH (2012) Influence of heat treatment on the heat distortion temperature of poly(lactic acid)/bamboo fiber/talc hybrid biocomposites. J Appl Polym Sci 123:2828–2836CrossRefGoogle Scholar
  79. Shibata S, Cao Y, Fukumoto I (2008) Flexural modulus of the unidirectional and random composites made from biodegradable resin and bamboo and kenaf fibres. Compos Part A-Appl S 39:640–646CrossRefGoogle Scholar
  80. Shih YF (2007) Mechanical and thermal properties of waste water bamboo husk fiber reinforced epoxy composites. Mater Sci Eng A Struct 445–446:289–295CrossRefGoogle Scholar
  81. Singh S (2009) Green bio-composites from polyhydroxybutyrate-co-valerate (PHBV), wood fiber and talc. ProQuest, UMI Dissertation PublishingGoogle Scholar
  82. Singh S, Mohanty AK (2007) Wood fiber reinforced bacterial bioplastic composites: fabrication and performance evaluation. Compos Sci Tech 67:1753–1763CrossRefGoogle Scholar
  83. Singh S, Mohanty AK, Sugie T, Takai Y, Hamada H (2008) Renewable resource based biocomposites from natural fiber and polyhydroxybutyrate-co-valerate (PHBV) bioplastic. Compos Part A-Appl S 39:875–886CrossRefGoogle Scholar
  84. Sun J, Tian J, Gu Z (2006) Comparison of structure and thermal property between bamboo fibers and regenerated bamboo fibers. J Tianjin Polytech Univ 25:37–40Google Scholar
  85. Thwe MM, Liao K (2000) Characterization of bamboo-glass fiber reinforced polymer matrix hybrid composite. J Mater Sci Lett 19:1873–1876CrossRefGoogle Scholar
  86. Thwe MM, Liao K (2002) Effects of environmental aging on the mechanical properties of bamboo-glass fiber reinforced polymer matrix hybrid composites. Compos Part A-Appl S 33:43–52CrossRefGoogle Scholar
  87. Thwe MM, Liao K (2003) Environmental effects on bamboo-glass/polypropylene hybrid composites. J Mater Sci 38:363–376CrossRefGoogle Scholar
  88. Tokoro R, Vu DM, Okubo K, Tanaka T, Fujii T, Fujiura T (2008) How to improve mechanical properties of polylactic acid with bamboo fibers. J Mater Sci 43:775–787CrossRefGoogle Scholar
  89. Tung N, Yamamoto H, Matsuoka T, Fujii T (2004) Effect of surface treatment on interfacial strength between bamboo fiber and PP resin. JSME Int J, Ser A 47:561–565CrossRefGoogle Scholar
  90. Varada Rajulu A, Rama Devi R, Ganga Devi L (2005) Thermal degradation parameters of bamboo fiber reinforcement. J Reinforced Plastics Composites 24:1407–1411CrossRefGoogle Scholar
  91. Wai NN, Nanko H, Murakami K (1985) A morphological study on the behavior of bamboo pulp fibers in the beating process. Wood Sci Technol 19:211–222CrossRefGoogle Scholar
  92. Wan YQ, Ko FK (2009) Hierarchical structure and mechanical properties of bamboo fibrils. ICCM-17, Scotland, July 27–31Google Scholar
  93. Wang R, Wang C (2006) Research on raw bamboo fiber reinforced polypropylene composites. China Plastics 10:43–46 (in Chinese)Google Scholar
  94. Wang H, Chang R, Sheng K, Adl M, Qian X (2008) Impact response of bamboo-plastic composites with the properties of bamboo and polyvinylchloride (PVC). J Bionic Eng 5(suppl):28–33CrossRefGoogle Scholar
  95. Wang H, Sheng K, Chen J, Mao H, Qian X (2010) Mechanical and thermal properties of sodium silicate treated moso bamboo particles reinforced PVC composites. Sci China Ser E Tech Sci 53:2932–2935CrossRefGoogle Scholar
  96. Wang X, Ren H, Zhang B, Fei B, Burgert I (2011) Cell wall structure and formation of maturing fibres of moso bamboo (Phyllostachys pubescens) increase buckling resistance. J Roy Soc Interface. doi:10.1098/rsif.2011.0462
  97. Wong S, Shanks R, Hodzic A (2002) Properties of poly(3-hydroxybutyric acid) composites with flax fibres modified by plasticiser absorption. Macromol Mater Eng 287:647–655Google Scholar
  98. Wong KJ, Zahi S, Low KO, Lim CC (2010) Fracture characterisation of short bamboo fibre reinforced polyester composites. Mater Design 31:4147–4154CrossRefGoogle Scholar
  99. Xu X, Wang Y, Zhang X, Jing G, Yu D, Wang S (2006) Effects on surface properties of natural bamboo fibers treated with atmospheric pressure argon plasma. Surf Interface Anal 38:1211–1217CrossRefGoogle Scholar
  100. Xu Y, Lu Z, Tang R (2007) Structure and thermal properties of bamboo viscose, Tencel and conventional viscose fiber. J Therm Anal Calorim 89:197–201CrossRefGoogle Scholar
  101. Yang Y (2004) Polypropylene composites reinforced with bamboo fibers. Plastic 33:47–49 (in Chinese)Google Scholar
  102. Yao W, Zhang W (2011) Research on manufacturing technology and application of natural bamboo fibre. 2011 Fourth international conference on intelligent computation technology and automation. doi:10.1109/ICICTA.2011.327
  103. Zhang Y, Wu H, Qiu Y (2010) Morphology and properties of hybrid composites based on polypropylene/polylactic acid blend and bamboo fiber. Bioresource Technol 101:7944–7950CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Dagang Liu
    • 1
  • Jianwei Song
    • 1
  • Debbie P. Anderson
    • 2
  • Peter R. Chang
    • 2
  • Yan Hua
    • 1
  1. 1.Department of ChemistryNanjing University of Information Science and TechnologyNanjingChina
  2. 2.Agriculture and Agri-Food Canada, Biobased PlatformsSaskatoonCanada

Personalised recommendations