Advertisement

Cellulose

, Volume 19, Issue 5, pp 1715–1729 | Cite as

Antimicrobial cotton fibres prepared by in situ synthesis of AgCl into a silica matrix

  • Danijela Klemenčič
  • Brigita Tomšič
  • Franci Kovač
  • Barbara SimončičEmail author
Original Paper

Abstract

Functional antimicrobial cotton fibres were prepared in a novel two-step procedure utilising the pad-dry-cure method to apply an inorganic–organic hybrid sol–gel precursor (reactive binder, RB) followed by the in situ synthesis of AgCl particles on the RB-treated fibres. The morphology and surface composition of the modified cotton fibres were investigated by scanning electron microscopy imaging and X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy spectral analyses. The bulk concentration of Ag on the cotton fibres was determined by inductively coupled plasma mass spectroscopy, and the antimicrobial activity against the bacteria Escherichia coli and Staphylococcus aureus was estimated according to the ISO 20645:2004 (E) and AATCC 100-1999 methods. The results showed that this application process yields the following important benefits: (1) the presence of the RB silica matrix increased the fibres’ capacity for adsorbing AgCl particles compared with the same fibres without RB; (2) the in situ synthesis enabled a simple and environmentally friendly preparation of AgCl particles from AgNO3 and their embedment into the fibres; (3) the AgCl particles were bound to the RB silica matrix by physical forces, which allowed for their controlled release from the fibres; (4) the capacity of the RB-modified cotton samples to hold embedded AgCl particles was sufficient to provide a 100 % bacterial reduction even after 10 repeated washing cycles; and (5) the chemical modification of the cotton fibres did not significantly change their whiteness, wettability or softness.

Keywords

Cellulose Antimicrobial Sol–gel matrix Silver chloride In situ synthesis Washing fastness 

Notes

Acknowledgments

This work was supported by the Slovenian Research Agency (Programme P2-0213 and Basic Project J2-2223).

References

  1. Agarwal A, Weis TL, Schurr MJ, Faith NG, Czuprynski CJ, McAnulty JF, Murphy CJ, Abbott NL (2010) Surfaces modified with nanometer-thick silver-impregnated polymeric films that kill bacteria but support growth of mammalian cells. Biomater 31:680–690CrossRefGoogle Scholar
  2. Bajpai M, Gupta P, Bajpai SK (2010) Silver(I) ions loaded cyclodextrin-grafted-cotton fabric with excellent antimicrobial property. Fiber Polym 11:8–13CrossRefGoogle Scholar
  3. Cazacu M, Racles M, Airinei A, Vlad An, Stoica L (2012) Silicone composites containg stabilized silver clusters or nanoparticles. Polym Adv Technol 23:122–129CrossRefGoogle Scholar
  4. Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12CrossRefGoogle Scholar
  5. Chibowski E, González-Caballero F (1993) Theory and practice of thin-layer wicking. Langmuir 9:330–340CrossRefGoogle Scholar
  6. Chibowski E, Hołysz L (1992) Use of the Washburn equation for surface free energy determination. Langmuir 8:710–716CrossRefGoogle Scholar
  7. Choi O, Kanjun Deng K, Kim NJ, Ross L Jr, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074CrossRefGoogle Scholar
  8. Dahl JA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107:2228–2269CrossRefGoogle Scholar
  9. Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloid Surf B Biointerface 79:5–18CrossRefGoogle Scholar
  10. El-Shishtawy RM, Asiri AM, Abdelwahed NAM, Al-Otaibi MM (2011) In situ production of silver nanoparticle on cotton fabric and its antimicrobial evaluation. Cellulose 18:75–82CrossRefGoogle Scholar
  11. Falletta E, Bonini M, Fratini E, Lo Nostro A, Pesavento G, Becheri A, Lo Nostro P, Canton P, Baglioni P (2008) Clusters of poly(acrylates) and silver nanoparticles: structure and applications for antimicrobial fabrics. J Phys Chem C 112:11758–11766CrossRefGoogle Scholar
  12. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668CrossRefGoogle Scholar
  13. Filipowska B, Rybicki E, Walawska A, Matyjas-Zgondek E (2011) New method for the antibacterial and antifungal modification of silver finished textiles. Fibr Text East Eur 19:124–128Google Scholar
  14. Fu X, Shen Y, Jiang X, Huang D, Yan Y (2011) Chitosan derivatives with dual-antibacterial functional groups for antimicrobial finishing of cotton fabrics. Carbohydr Polym 85:221–227CrossRefGoogle Scholar
  15. Ghosh S, Yadav S, Reynolds N (2010) Antibacterial properties of cotton fabric treated with silver nanoparticles. J Text Inst 101:917–924CrossRefGoogle Scholar
  16. Gorjanc M, Kovač F, Gorenšek M (2012) The influence of vat dyeing on the adsorption of synthesized colloidal silver onto cotton fabrics. Text Res J 82:62–69CrossRefGoogle Scholar
  17. Gorjanc M, Mozetič M, Gorenšek M (2009) Low-pressure plasma for pretreatment of cotton fabric for better adhesion of nanosilver. Tekstilec 52:263–269Google Scholar
  18. Gorjanc M, Bukošek V, Gorenšek M, Mozetič M (2010) CF4 plasma and silver functionalized cotton. Tex Res J 80:2204–2213CrossRefGoogle Scholar
  19. Gouda M (2012) Nano-zirconium oxide and nano-silver oxide/cotton gauze fabrics for antimicrobial and wound healing acceleration. J Ind Text 41:222–240CrossRefGoogle Scholar
  20. Hebeish A, El-Shafei A, Sharaf S, Zaghloul S (2011) Novel precursors for green synthesis and application of silver nanoparticles in the realm of cotton finishing. Carbohydr Polym 84:605–613CrossRefGoogle Scholar
  21. Hu W, Chen S, Li X, Shi S, Shen W, Zhang X, Wang H (2009) In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes. Mater Sci Eng C 29:1216–1219CrossRefGoogle Scholar
  22. Hunt RWG (1991) Measuring colour. Sec EDD. Ellis Horwood, New YorkGoogle Scholar
  23. Ibrahim NA, Eid BM, El-Batal H (2012) A novel approach for adding smart functionalities to cellulosic fabrics. Carbohydr Polym 87:744–751CrossRefGoogle Scholar
  24. Jeon HJ, Yi SC, Oh SG (2003) Preparation and antibacterial effects of Ag-SiO2 thin films by sol–gel method. Biomater 24:4921–4928CrossRefGoogle Scholar
  25. Jiang T, Liu L, Yao J (2011) In situ deposition of silver nanoparticles on the cotton fabrics. Fiber Polym 12:620–625CrossRefGoogle Scholar
  26. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74:2171–2178CrossRefGoogle Scholar
  27. Khalil-Abad MS, Yazdanshenas ME, Nateghi MR (2009) Effect of cationization on adsorption of silver nanoparticles on cotton surfaces and its antibacterial activity. Cellulose 16:1147–1157CrossRefGoogle Scholar
  28. Khoddami A, Shokohi SS, Morshed M, Abedi D (2011) Simultaneous application of silver nanoparticles with different crease resistant finishes. Fiber Poly 12:635–641CrossRefGoogle Scholar
  29. Kim YH, Lee DK, Cha HG, Kim CW, Kang YS (2007) Synthesis and characterization of antibacterial Ag-SiO2 nanocomposites. J Phys Chem C 111:3629–3635CrossRefGoogle Scholar
  30. Kim SS, Park JE, Lee J (2011) Properties and antimicrobial efficacy of cellulose fiber coated with silver nanoparticles and 3-Mercaptopropyltrimethoxysilane (3-MPTMS). J Appl Polym Sci 119:2261–2267CrossRefGoogle Scholar
  31. Kissa E (1984) Repellent finishes. In: Lewin M, SB Sello (eds) Handbook of fiber science and technology: volume II, chemical processing of fibers and fabrics: functional finishes, part B. Marcel Dekker, New York, pp 142–210Google Scholar
  32. Klemenčič D, Simončič B, Tomšič B, Orel B (2010) Biodegradation of silver functionalised cellulose fibres. Carbohydr Polym 80:426–435CrossRefGoogle Scholar
  33. Lee HJ, Jeong SH (2005) Bacteriostasis and skin innoxiousness of nanosize silver colloids on textile fabrics. Text Res J 75:551–556CrossRefGoogle Scholar
  34. Lee HY, Park HK, Lee YM, Kim K, Park SB (2007) A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chem Commun 18:2959–2961CrossRefGoogle Scholar
  35. Li Z, Lee D, Sheng X, Cohen RE, Rubner MF (2006) Two-level antibacterial coating with both release-killing and contact killing capabilities. Langmuir 22:9820–9823CrossRefGoogle Scholar
  36. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun HZ, Tam PKH, Chiu JF, Che CM (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924CrossRefGoogle Scholar
  37. Mahltig B, Fiedler D, Böttcher H (2004) Antimicrobial sol-gel coatings. J Sol–Gel Sci Technol 32:219–222CrossRefGoogle Scholar
  38. Mahltig B, Haufe H, Böttcher H (2005) Functionalisation of textiles by inorganic sol–gel coatings. J Mater Chem 15:4385–4398CrossRefGoogle Scholar
  39. Mahltig B, Gutmann E, Meyer DC, Reibold M, Bund A, Böttcher H (2009) Thermal preparation and stabilization of crystalline silver particles in SiO2-based coating solutions. J Sol–Gel Sci Technol 49:202–208CrossRefGoogle Scholar
  40. Mahltig B, Fiedler D, Fischer A (2010) Antimicrobial coatings on textile-modifications of sol-gel layers with organic and inorganic biocides. J Sol–Gel Sci Technol 55:269–277CrossRefGoogle Scholar
  41. Matsumura Y, Yoshikata K, Kunisaki S, Tsuchdio T (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Micobiol 69:4278–4281CrossRefGoogle Scholar
  42. Miao J, Pangule RC, Paskaleva EE, Hwang EE, Kane RS, Linhardt RJ, Dordick JS (2011) Lysostaphin-functionalized cellulose fibers with antistaphylococcal activity for wound healing applications. Biomaterials 32:9557–9567CrossRefGoogle Scholar
  43. Mihailović D, Šaponjić Z, Radoičić R, Lazović S, Baily CJ, Jovančić P, Nedeljković J, Radetić M (2011) Functionalization of cotton fabrics with corona/air RF plasma and colloidal TiO2 nanoparticles. Cellulose 18:811–825CrossRefGoogle Scholar
  44. Montazer M, Alimohammadi F, Shamei A, Rahimi MK (2012) In situ synthesis of nano silver on cotton using Tollens’ reagent. Carbohydr Poly 87:1706–1712CrossRefGoogle Scholar
  45. Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, de Camargo ER, Barros Barbosa D (2009) The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents 34:103–110CrossRefGoogle Scholar
  46. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnol 16:2346–2353CrossRefGoogle Scholar
  47. Mu S, Wu Z, Qi S, Wu D, Yang W (2010) Preparation of electrically conductive polyimide/silver composite fibers via in situ surface treatment. Mater Lett 64:1668–1671CrossRefGoogle Scholar
  48. Onar N, Aksit AC, Sen Y, Mutlu M (2011) Antimicrobial, UV-protective and self-cleaning properties of cotton fabrics coated by dip-coating and solvothermal coating methods. Fiber Polym 12:461–470CrossRefGoogle Scholar
  49. Potiyaraj P, Kumlangdudsana P, Dubas ST (2007) Synthesis of silver chloride nanocrystal on silk fibers. Mater Lett 61:2464–2466CrossRefGoogle Scholar
  50. Procaccini R, Ceré S, Pellice S (2011) Development and thermal evolution of silver clusters in hybrid organic-inorganic sol-gel coatings. Surf Coat Technol 205:5464–5469CrossRefGoogle Scholar
  51. Qian T, Su H, Tan T (2011) The bactericidal and mildew-proof activity of a TiO2–chitosan composite. J Photochem Photobiol A Chem 218:130–136CrossRefGoogle Scholar
  52. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83CrossRefGoogle Scholar
  53. Ramirez MI, Bashir S, Luo Z, Liu JL (2009) green synthesis and characterization of polymer-stabilized silver nanoparticles. Colloid Surf B Biointerface 73:185–191CrossRefGoogle Scholar
  54. Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125:13940–13941CrossRefGoogle Scholar
  55. Ravindra S, Murali Mohan Y, Narayana Reddy N, Mohana Raju K (2010) Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via “Green Approach”. Colloid Surf A Physicochem Eng Asp 367:31–40CrossRefGoogle Scholar
  56. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96CrossRefGoogle Scholar
  57. Simončič B, Tomšič B (2010) Structures of novel antimicrobial agents for textiles. Text Res J 80:1721–1737CrossRefGoogle Scholar
  58. Simončič B, Černe L, Tomšič B, Orel B (2008) Surface properties of cellulose modified by imidazolidinone. Cellulose 15:47–58CrossRefGoogle Scholar
  59. Simončič B, Tomšič B, Černe L, Orel B, Jerman I, Kovač J, Žerjav M, Simončič A (2012) Multifunctional water and oil repellent and antimicrobial properties of finished cotton: influence of sol-gel finishing procedure. J Sol–Gel Sci Technol 61:340–354CrossRefGoogle Scholar
  60. Smiechowicz E, Kulpinski P, Niekraszewicz B, Bacciarelli A (2011) Cellulose fibers modified with silver nanoparticles. Cellulose 18:975–985CrossRefGoogle Scholar
  61. Song JL, Birbach NL, Hinestroza JP (2012) Deposition of silver nanoparticles on cellulosic fibers via stabilization of carboxymethyl groups. Cellulose 19:411–424CrossRefGoogle Scholar
  62. Stobie N, Duffy B, McCormack DE, Colreavy J, Hidalgo M, McHale P, Hinder SJ (2008) Prevention of Staphylococcus epidermidis biofilm formation using a low-temperature processed silver-doped phenyltriethoxysilane sol-gel coating. Biomater 29:963–969CrossRefGoogle Scholar
  63. Su W, Wei SS, Hu SQ, Tang JX (2011) Antimicrobial finishing of cotton textile with nanosized silver colloids synthesized using polyethylene glycol. J Text Inst 102:150–156CrossRefGoogle Scholar
  64. Tarimala S, Kothari N, Abidi N, Hequet E, Fralick J, Dai LL (2006) New approach to antibacterial treatment of cotton fabric with silver nanoparticle–doped silica using sol–gel process. J Appl Polym Sci 101:2938–2943CrossRefGoogle Scholar
  65. Thomas V, Yallapu MM, Sreedhar B, Bajpai SK (2007) A versatile strategy to fabricate hydrogel-silver nanocomposites and investigation of their antimicrobial activity. J Colloid Interface Sci 315:389–395CrossRefGoogle Scholar
  66. Thomas V, Bajpai M, Bajpai SK (2010) In situ formation of silver nanoparticles within chitosan-attached cotton fabric for antibacterial property. J Ind Text 40:229–245CrossRefGoogle Scholar
  67. Tomšič B (2009) Influence of particle size of the silver on bactericidal activity of the cellulose fibres. Tekstilec 52:181–194Google Scholar
  68. Tomšič B, Simončič B, Cvijin D, Orel B, Zorko M, Simončič A (2008a) Elementary nano sized silver as antibacterial agent on cotton fabric. Tekstilec 51:199–215Google Scholar
  69. Tomšič B, Simončič B, Orel B, Černe L, Forte Tavčer P, Zorko M, Jerman I, Vilčnik A, Kovač J (2008b) Sol–gel coating of cellulose fibres with antimicrobial and repellent properties. J Sol–Gel Sci Technol 47:44–57CrossRefGoogle Scholar
  70. Tomšič B, Simončič B, Orel B, Žerjav M, Schroers H, Simončič A, Samardžija Z (2009) Antimicrobial activity of AgCl embedded in a silica matrix on cotton fabric. Carbohydr Polym 75:618–626CrossRefGoogle Scholar
  71. Tomšič B, Jerman I, Orel B, Simončič B (2011a) Efficiency of silver based antimicrobial finish on cellulose fibres: covalently versus physically bonded silver. In: 11th World textile conference AUTEX, 8–10 June 2011, Mulhouse, France. Book of proceedings: 150 years of research and innovation in textile science. Ecole Nationale Supérieure d’Ingénieurs Sud-Alsace, Mulhouse, pp 1062–1068Google Scholar
  72. Tomšič B, Klemenčič D, Simončič B, Orel B (2011b) Influence of antimicrobial finishes on the biodeterioration of cotton and cotton/polyester fabrics: leaching versus bio-barrier formation. Polym Degrad Stab 96:1286–1296CrossRefGoogle Scholar
  73. Van Oss CJ, Giese RF, Li Z (1992) Determination of contact angles and pore sizes of porous media by column and thin layer wicking. J Adhesion Sci Tech 6(4):413–428CrossRefGoogle Scholar
  74. Vilčnik A, Jerman I, Šurca Vuk A, Koželj M, Orel B, Tomšič B, Simončič B, Kovač J (2009) Structural properties and antibacterial effects of hydrophobic and olephobic sol–gel coatings for cotton fabric. Langmuir 25:5968–5980Google Scholar
  75. Vince J, Orel B, Vilčnik A, Japelj Fir M, Šurca Vuk A, Jovanovski V, Simončič B (2006) Structural and water-repellent properties of a urea/poly(dimethylsiloxane) sol-gel hybrid and its bonding to cotton fabric. Langmuir 22:6489–6497CrossRefGoogle Scholar
  76. Wang JX, Wen LX, Wang ZH, Chen JF (2006) Immobilization of silver on hollow silica nanospheres and nanotubes and their antimicrobial effects. Mater Chem Phys 96:90–97CrossRefGoogle Scholar
  77. Xing Y, Yang X, Dai J (2007) Antimicrobial finishing of cotton textile based on water glass by sol–gel method. J Sol–Gel Sci Technol 43:187–192CrossRefGoogle Scholar
  78. Xue CH, Chen J, Yin W, Jia ST, Ma JZ (2012) Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Appl Surf Sci 258:2468–2472CrossRefGoogle Scholar
  79. Zhang F, Wu X, Chen Y, Lin H (2009) Application of silver nanoparticles to cotton fabric as an antibacterial textile finish. Fiber Polym 10:496–501CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Danijela Klemenčič
    • 1
  • Brigita Tomšič
    • 1
  • Franci Kovač
    • 2
  • Barbara Simončič
    • 1
    Email author
  1. 1.Department of Textiles, Faculty of Natural Sciences and EngineeringUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations