Advertisement

Cellulose

, Volume 19, Issue 3, pp 793–807 | Cite as

Elastic properties of cellulose nanopaper

  • A. KulachenkoEmail author
  • T. Denoyelle
  • S. Galland
  • S. B. Lindström
Original Paper

Abstract

Nanopaper is a transparent film made of network-forming nanocellulose fibers. These fibers are several micrometers long with a diameter of 4–50 nm. The reported elastic modulus of nanopaper often falls short of even conservative theoretical predictions based on the modulus of crystalline cellulose, although such predictions usually perform well for other fiber composite materials. We investigate this inconsistency and suggest explanations by identifying the critical factors affecting the stiffness of nanopaper. A similar inconsistency is found when predicting the stiffness of conventional paper, and it is usually explained by the effects introduced during drying. We found that the effect of the drying cannot solely explain the relatively low elastic modulus of nanopaper. Among the factors that showed the most influence are the presence of non-crystalline regions along the length of the nanofibers, initial strains and the three-dimensional structure of individual bonds.

Keywords

Nanopaper Nanocellulose Elastic properties Fiber network model 

Notes

Acknowledgments

The financial support of BiMaC Innovation and EffTech program of the Finnish Forest Cluster are greatly acknowledged by the authors. Anne-Mari Olsson at Innventia AB is very much acknowledged for the assistance during DMA experiments.

References

  1. Agarwal UP, Reiner RS, Filpponen I, Isogai A, Argyropoulos DS (2010) Crystallinities of nanocrystalline and nanofibrillated celluloses by FT- raman spectroscopy. In: TAPPI international conference on nanotechnology for the forest product industry, Helsniki, 2010, Tappi, p 7Google Scholar
  2. Algar WH (1965) Effect of structure on the mechanical properties of paper. In: Bolam F (ed) Consolidation of the paper web, vol 2. British Paper and Board Makers’s Association, Cambridge, pp 814–851Google Scholar
  3. Åström J, Saarinen S, Niskanen K, Kurkijarvi J (1994) Microscopic mechanics of fiber networks. J Appl Phys 75(5):2383–2392CrossRefGoogle Scholar
  4. Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17(3):559–574. doi: 10.1007/s10570-009-9393-y CrossRefGoogle Scholar
  5. Chou T-W (1992) Microstructural design of fiber composites. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  6. Cox HL (1952) The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 3(3):72–79CrossRefGoogle Scholar
  7. Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Euro Polym J 43(8):3434–3441. doi: 10.1016/j.eurpolymj.2007.05.038 CrossRefGoogle Scholar
  8. Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579–1585. doi: 10.1021/bm800038n CrossRefGoogle Scholar
  9. Heyden S (2000) Network modelling for the evaluation of mechanical properties of cellulose fluff. Lund University, LundGoogle Scholar
  10. Kulachenko A, Uesaka T (2010) Simulation of wet fiber network deformation. Paper presented at the progress in paper physics. Montreal, Canada, 6–11 JuneGoogle Scholar
  11. Lindström SB, Karabulut E, Kulachenko A, Sehaqui H, Wågberg L (2012) Mechanosorptive creep in nanocellulose materials. Cellulose. doi: 10.1007/s10570-012-9665-9
  12. Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55(4):241–249. doi: 10.1007/s10086-009-1029-1 CrossRefGoogle Scholar
  13. Nishiyama Y, Kim U-J, Kim D-Y, Katsumata KS, May RP, Langan P (2003) Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4(4):1013–1017. doi: 10.1021/bm025772x CrossRefGoogle Scholar
  14. Nishiyama Y, Langan P, Wada M, Forsyth VT (2010) Looking at hydrogen bonds in cellulose. Acta Crystallogr Sect D 66(11):1172–1177. doi: 10.1107/S0907444910032397 CrossRefGoogle Scholar
  15. Niskanen KJ (2008) Paper physics. Papermaking science and technology, vol 16, 2 edn. Fapet Oy, Helsinki, FinlandGoogle Scholar
  16. Niskanen KJ, Alava MJ (1994) Planar random networks with flexible fibers. Phys Rev Lett 73(25):3475CrossRefGoogle Scholar
  17. Page DH, Seth RS (1980a) The elastic modulus of paper. The effects of dislocations, microcompressions, curl, crimps, and kinks. Tappi 63(10):99–102Google Scholar
  18. Page DH, Seth RS (1980b) The elastic modulus of paper. The importance of fiber modulus, bonding, and fiber length. Tappi 63(6):113–116Google Scholar
  19. Rigdahl M, Salmén NL (1984) Dynamic mechanical properties of paper: effect of density and drying restraints. J Mater Sci 19(9):2955–2961. doi: 10.1007/bf01026973 CrossRefGoogle Scholar
  20. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491. doi: 10.1021/bm0703970 CrossRefGoogle Scholar
  21. Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57(165):651–660. doi: 10.1002/pol.1962.1205716551 CrossRefGoogle Scholar
  22. Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11(9):2195–2198. doi: 10.1021/bm100490s CrossRefGoogle Scholar
  23. Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24(14):4168–4175. doi: 10.1021/ma00014a033 CrossRefGoogle Scholar
  24. Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16(1):75–85. doi: 10.1007/s10570-008-9244-2 CrossRefGoogle Scholar
  25. Tanaka F, Iwata T (2006) Estimation of the elastic modulus of cellulose crystal by molecular mechanics simulation. Cellulose 13(5):509–517. doi: 10.1007/s10570-006-9068-x CrossRefGoogle Scholar
  26. Uesaka T, Moss C, Nanri Y (1992) The characterization of hygroexpansivity of paper. J Pulp Paper Sci 18(1):J11–J16Google Scholar
  27. Wriggers P, Zavarise G (1997) On contact between three-dimensional beams undergoing large deflections. Commun Numer Methods Eng 13:429–438CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • A. Kulachenko
    • 1
    Email author
  • T. Denoyelle
    • 1
  • S. Galland
    • 2
  • S. B. Lindström
    • 3
    • 4
  1. 1.Department of Solid MechanicsKTH Royal Institute of TechnologyStockholmSweden
  2. 2.The Wallenberg Wood Science CentreKTH Royal Institute of TechnologyStockholmSweden
  3. 3.Department of Management and Engineering, The Institute of TechnologyLinköping UniversityLinköpingSweden
  4. 4.Department of Fiber and Polymer TechnologyKTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations