, Volume 19, Issue 3, pp 695–703 | Cite as

Improvement of mechanical and oxygen barrier properties of cellulose films by controlling drying conditions of regenerated cellulose hydrogels

  • Quanling Yang
  • Shuji Fujisawa
  • Tsuguyuki Saito
  • Akira Isogai
Original Paper


Mechanical, thermal and oxygen barrier properties of regenerated cellulose films prepared from aqueous cellulose/alkali/urea solutions can be markedly improved by controlling the drying conditions of the films. By pre-pressing followed by vacuum drying under compression, the tensile strength, Young’s modulus, coefficient of thermal expansion and oxygen permeability of the dried films reached 263 MPa, 7.3 GPa, 10.3 ppm K−1 and 0.0007 ml μm m−2 day−1 kPa−1, respectively. Thus, films produced in this way show the highest performance of regenerated cellulose films with no orientation of cellulose chains reported to date. These improved properties are accompanied by a clear increase in cellulose II crystallinity from 50 to 62% during pre-pressing/press-vacuum drying process. At the same time, the film density increased from 1.45 to 1.57 g cm−3, and the moisture content under equilibrium conditions decreased from 14.1 to 9.8%. Hence, the aqueous alkali/urea solvent system has potential applications in producing new and environmentally friendly cellulose films with high performances through control of the drying conditions.


Regenerated cellulose film Alkali/urea Drying conditions Oxygen barrier Mechanical properties 



This study was partially supported by the Japan Society for the Promotion of Science (JSPS), Grant-in-Aid for Scientific Research S (grant number 21228007), and by the China Scholarship Council (CSC) for QY.

Supplementary material

10570_2012_9683_MOESM1_ESM.doc (167 kb)
Supplementary material 1 (DOC 167 kb)


  1. Alexander LE (1979) X-ray diffraction methods in polymer science. Robert E. Kreiger Publishing Co., Humington, pp 423–424Google Scholar
  2. Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574CrossRefGoogle Scholar
  3. Cai J, Zhang L, Zhou J, Qi H, Chen H, Kondo T, Chen X, Chu B (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825CrossRefGoogle Scholar
  4. Cai J, Kimura S, Wada M, Kuga S, Zhang L (2008) Cellulose aerogels from aqueous alkali hydroxide–urea solution. ChemSusChem 1:149–154CrossRefGoogle Scholar
  5. Cai J, Wang Q, Zhang L (2010) Prepare of a kind of high strength and optically transparent cellulose material. China Patent ZL20100235233.1Google Scholar
  6. Ebina T, Mizukami F (2007) Flexible transparent clay films with heat-resistant and high gas-barrier properties. Adv Mater 19:2450–2453CrossRefGoogle Scholar
  7. Edlund U, Zhu Ryberg YZ, Albertsson AC (2010) Barrier films from renewable forestry waste. Biomacromolecules 11:2532–2538CrossRefGoogle Scholar
  8. Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524CrossRefGoogle Scholar
  9. Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165CrossRefGoogle Scholar
  10. Fukuzumi H, Saito T, Iwamoto S, Kumamoto Y, Ohdaira T, Suzuki R, Isogai A (2011) Pore size determination of TEMPO-oxidized cellulose nanofibril films by positron annihilation lifetime spectroscopy. Biomacromolecules 12:4057–4062CrossRefGoogle Scholar
  11. Gindl W, Martinschitz KJ, Boesecke P, Keckes J (2006) Changes in the molecular orientation and tensile properties of uniaxially drawn cellulose films. Biomacromolecules 7:3146–3150CrossRefGoogle Scholar
  12. Hartman J, Albertsson AC, Sjöberg J (2006) Surface- and bulk-modified galactoglucomannan hemicellulose films and film laminates for versatile oxygen barriers. Biomacromolecules 7:1983–1989CrossRefGoogle Scholar
  13. Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762CrossRefGoogle Scholar
  14. Hirota M, Furihata K, Saito T, Kawada T, Isogai A (2010) Glucose/glucuronic acid alternating co-polysaccharides prepared from TEMPO-oxidized native celluloses by surface peeling. Angew Chem Int Ed 49:7670–7672CrossRefGoogle Scholar
  15. Hori R, Wada M (2006) The thermal expansion of cellulose II and IIIII crystals. Cellulose 13:281–290CrossRefGoogle Scholar
  16. Hyden WL (1929) Manufacture and properties of regenerated cellulose films. Ind Eng Chem 21:405–410CrossRefGoogle Scholar
  17. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRefGoogle Scholar
  18. Kong K, Eichhorn SJ (2005) Crystalline and amorphous deformation of process-controlled cellulose-II fibres. Polymer 46:6380–6390CrossRefGoogle Scholar
  19. Kontturi E, Tammelin T, Österberg M (2006) Cellulose—model films and the fundamental approach. Chem Soc Rev 35:1287–1304CrossRefGoogle Scholar
  20. Liang S, Wu J, Tian H, Zhang L, Xu J (2008) High-strength cellulose/poly(ethylene glycol) gels. ChemSusChem 1:558–563CrossRefGoogle Scholar
  21. Liu S, Zhang L, Sun Y, Lin Y, Zhang X, Nishiyama Y (2009) Supramolecular structure and properties of high strength regenerated cellulose films. Macromol Biosci 9:29–35CrossRefGoogle Scholar
  22. Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A-Mater Sci Process 80:155–159CrossRefGoogle Scholar
  23. Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687CrossRefGoogle Scholar
  24. Nogi M, Iwamoto S, Nakagaito A, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598CrossRefGoogle Scholar
  25. Northolt MG, Boerstoel H, Maatman H, Huisman R, Veurink J, Elzerman H (2001) The structure and properties of cellulose fibres spun from an anisotropic phosphoric acid solution. Polymer 42:8249–8264CrossRefGoogle Scholar
  26. Ohlrogge J, Allen D, Berguson B, DellaPenna D, Shachar-Hill Y, Stymne S (2009) Driving on biomass. Science 324:1019–1020CrossRefGoogle Scholar
  27. Qi H, Chang C, Zhang L (2009) Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process. Green Chem 11:177–184CrossRefGoogle Scholar
  28. Rabek J (1980) Experimental methods in polymer chemistry. Wiley, ChichesterGoogle Scholar
  29. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Rederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489CrossRefGoogle Scholar
  30. Read SM, Bacic T (2002) Prime time for cellulose. Science 295:59–60CrossRefGoogle Scholar
  31. Rüsch gen. Klaas M, Schöne H (2009) Direct, high-yield conversions of cellulose into biofuel and platform chemicals-on the way to a sustainable biobased economy. ChemSusChem 2:127–128CrossRefGoogle Scholar
  32. Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11:2195–2198CrossRefGoogle Scholar
  33. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRefGoogle Scholar
  34. Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85CrossRefGoogle Scholar
  35. Yang Q, Lue A, Qi H, Sun Y, Zhang X, Zhang L (2009) Properties and bioapplications of blended cellulose and corn protein films. Macromol Biosci 9:849–856CrossRefGoogle Scholar
  36. Yang Q, Fukuzumi H, Saito T, Isogai A, Zhang L (2011a) Transparent cellulose films with high gas barrier properties fabricated from aqueous alkali/urea solutions. Biomacromolecules 12:2766–2771CrossRefGoogle Scholar
  37. Yang Q, Qin X, Zhang L (2011b) Properties of cellulose films prepared from NaOH/urea/zincate aqueous solution at low temperature. Cellulose 18:681–688CrossRefGoogle Scholar
  38. Zhu Ryberg YZ, Edlund U, Albertsson AC (2011) Conceptual approach to renewable barrier film design based on wood hydrolysate. Biomacromolecules 12:1355–1362Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Quanling Yang
    • 1
  • Shuji Fujisawa
    • 1
  • Tsuguyuki Saito
    • 1
  • Akira Isogai
    • 1
  1. 1.Graduate School of Agricultural and Life SciencesThe University of TokyoBunkyo-ku, TokyoJapan

Personalised recommendations