Cellulose

, Volume 19, Issue 3, pp 843–853 | Cite as

Cellulosic nanoparticles from alfa fibers (Stipa tenacissima): extraction procedures and reinforcement potential in polymer nanocomposites

  • Ayman Ben Mabrouk
  • Hamid Kaddami
  • Sami Boufi
  • Fouad Erchiqui
  • Alain Dufresne
Article

Abstract

The microstructure and chemical composition of alfa (Stipa tenacissima) were investigated. The polysaccharide and lignin contents were around 70 and 20 wt%, respectively. From the bleached and delignified fibers, two types of nanosized cellulosic particles were extracted, namely cellulose nanocrystals and microfibrillated cellulose (MFC). The former correspond typically to the elementary crystallite units of the cellulose fibers, with a rod-like morphology and an aspect ratio of about 20. The latter, mechanically disintegrated from oxidized bleached fibres, presents an entangled fibrillar structure with widths in the range 5-20 nm. The reinforcing potential of the ensuing nanoparticles was investigated by casting a mixture of acrylic latex and aqueous dispersion of cellulose nanoparticles. Thermo-mechanical analysis revealed a huge enhancement of the stiffness above the glass transition of the matrix. Significant differences in the mechanical reinforcing capability of the nanoparticles were reported.

Keywords

Alfa Structure Nanocrystals Microfibrillated cellulose (MFC) Nanocomposites 

Notes

Acknowledgments

The authors thank for their financial support Hassan II Academy of Sciences and Techniques, the French Ministry of Foreign Affairs (Corus program 6046), the PHC-UTIQUE (Grant 11/G 1115) and the Tunisian Ministry of Higher Education and Scientific Research.

References

  1. Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626CrossRefGoogle Scholar
  2. Ben Brahim S, Ben Cheikh R (2007) Influence of fiber orientation and volume fraction on the tensile properties of unidirectional Alfa polyester composite. Compos Sci Technol 67:140–147CrossRefGoogle Scholar
  3. Bendahou A, Habibi Y, Kaddami H, Dufresne A (2009) Physico-chemical characterization of palm from phoenix dactylifera–L, preparation of cellulose whiskers and natural rubber–based nanocomposites. J Biobased Mat Bioenerg 3:1–10CrossRefGoogle Scholar
  4. Bendahou A, Kaddami H, Dufresne A (2010) Investigation on the effect of cellulosic nanoparticles morphology on the properties of natural rubber based nanocomposites. Eur Polym J 46:609–620CrossRefGoogle Scholar
  5. Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983CrossRefGoogle Scholar
  6. Bessadok A, Marais S, Gouanve F, Colasse L, Zimmerlin I, Roudesli S, Métayer M (2007) Effect of chemical treatments of alfa (Stipa tenacissima) fibres on water-sorption properties. Compos Sci Technol 67:685–697CrossRefGoogle Scholar
  7. Bouiri B, Amrani M (2009) Production of dissolving grade pulp from alfa. BioResources 5:291–302Google Scholar
  8. Cranston ED, Gray DG (2008) Birefringence in spin-coated films containing cellulose nanocrystals. Col Surf A 325:44–51CrossRefGoogle Scholar
  9. de Souza Lima M, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Comm 25:771–774CrossRefGoogle Scholar
  10. Dufresne A (2000) Dynamic mechanical analysis of the interphase in bacterial polyester/cellulose whiskers natural composites. Compos Interfaces 7:53–67CrossRefGoogle Scholar
  11. Dufresne A (2008) Polysaccharide nanocrystals reinforced nanocomposites. Can J Chem 86:484–494CrossRefGoogle Scholar
  12. Frisch HL, Mark EJ (1996) Nanocomposites prepared by threading polymer chains through zeolites, mesoporous silica, or silica nanotubes. Chem Mater 8:1735–1738CrossRefGoogle Scholar
  13. Goetz L, Mathew A, Oksman K, Gatenholm P, Ragauskas AJ (2009) A novel nanocomposite film prepared from crosslinked cellulosic whiskers. Carbohydr Polym 75:85–89CrossRefGoogle Scholar
  14. Harris PJF (2004) Carbon nanotube composites. Int Mater Rev 49:31–43CrossRefGoogle Scholar
  15. Kaddami H, Gérard JF, Pascault JP (2004) Influence of the initiation rate on the polymerization kinetics of hydroxy ethyl methacrylate (HEMA) filled with HEMA-grafted silica preformed nanoparticles. Polym Eng Sci 44:1231–1939CrossRefGoogle Scholar
  16. Kaddami H, Becker-Villinger C, Schmidt H (2006) Monitoring morphology and properties of hybrid organic-inorganic materials from in situ polymerization of tetraethoxysilane in polyimide polymer: 1) effect of the coupling agent on the microstructure and interfacial interaction. E-Polymers 10:1–10Google Scholar
  17. Khiari R, Mhenni MF, Belgacem MN, Mauret E (2010) Chemical composition and pulping of date palm rachis and Posidonia oceanica – A comparison with other wood and non-wood fibre sources. Biores Technol 101:775–780CrossRefGoogle Scholar
  18. Lau KT, Gu C, Hui D (2006) A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Composites B 37:425–436CrossRefGoogle Scholar
  19. Motomatsu M, Takahashi T, Nie HY, Mizutani W, Tokumoto H (1997) Microstructure study of acrylic polymer-silica nanocomposite surface by scanning force microscopy. Polymer 38:177–182CrossRefGoogle Scholar
  20. Okada A, Kawasumi M, Usuki A, Kojima Y, Kurauchi T, Kamigaito O (1990) Nylon 6-clay hybrid. Mater Res Soc Proc 171:45–50CrossRefGoogle Scholar
  21. Paiva MC, Ammar I, Campos AR, Ben Cheikh R, Cunha AM (2007) Alfa fibers: mechanical, morphological and interfacial characterization. Compos Sci Technol 67:1132–1138CrossRefGoogle Scholar
  22. Pit Z, Mark EJ, Jethmalani JM, Ford WT (1996) Mechanical properties of a poly(methvl acrvlate) nanocomposite containing regularly-arranged silica particles. Polym Bull 37:545–551CrossRefGoogle Scholar
  23. Röser M, Heklau H (2011) Abscission of leaf laminas—an unnoticed factor in tussock grass formation. Flora 206:32–37CrossRefGoogle Scholar
  24. Ruckenstein E, Yuan Y (1997) Nanocomposites of rigid polyamide dispersed in flexible vinyl. Polymer 38:3855–3860CrossRefGoogle Scholar
  25. Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992–1996CrossRefGoogle Scholar
  26. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimation the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Res J 29:786–794CrossRefGoogle Scholar
  27. Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432CrossRefGoogle Scholar
  28. Siqueira G, Bras J, Dufresne A (2010) Luffa cylindrica as a lignocellulosic source of fiber, microfibrillated cellulose, and cellulose nanocrystals. BioResources 5727–740Google Scholar
  29. Sirò I, Plackett D (2010) Microfibrillated cellulose and new nanocomposites materials: a review. Cellulose 17:459–494CrossRefGoogle Scholar
  30. Terre et Vie (2002), L’Alfa : Importance écologique et socio-économique, N° 61–62. (http://www.terrevie.ovh.org/Alfa.pdf)

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Ayman Ben Mabrouk
    • 1
  • Hamid Kaddami
    • 2
  • Sami Boufi
    • 1
  • Fouad Erchiqui
    • 3
  • Alain Dufresne
    • 4
  1. 1.Laboratoire Sciences des Matériaux et Environnement, LMSEUniversity of SfaxSfaxTunisia
  2. 2.Laboratoire de Chimie Organométallique et Macromoléculaire - Matériaux CompositesCadi Ayyad University, Faculty of Sciences and Technologies of MarrakeshMarrakeshMorocco
  3. 3.Laboratoire de Plasturgie et NanocompositesUniversité de Québec en Abitibi-Témiscaminque, Boulevard de l’UniversitéRouyn-NorandaCanada
  4. 4.The International School of Paper, Print Media and Biomaterials (Pagora)Grenoble Institut of TechnologySaint Martin d’Hères CedexFrance

Personalised recommendations